[go: up one dir, main page]

login
A109707
Number of partitions of n into parts each equal to 5 mod 7.
4
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 2, 1, 1, 1, 0, 2, 1, 2, 1, 1, 2, 1, 3, 1, 3, 2, 2, 3, 1, 4, 2, 4, 3, 2, 5, 2, 6, 3, 5, 5, 3, 7, 3, 8, 5, 6, 8, 4, 10, 5, 10, 8, 8, 11, 6, 13, 8, 13, 12, 10, 15, 9, 18, 12, 17, 16, 14, 21, 13, 23, 17, 22, 23, 18, 28, 18, 31, 24, 28
OFFSET
0,25
LINKS
M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
FORMULA
G.f.: 1/product(1-x^(5+7j), j=0..infinity). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(5/7) * exp(Pi*sqrt(2*n/21)) / (2^(13/7) * 3^(5/14) * 7^(1/7) * Pi^(2/7) * n^(6/7)) * (1 + (11*Pi/(168*sqrt(42)) - 15*sqrt(6/7)/(7*Pi)) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284446(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 28 2017
EXAMPLE
a(36)=3 because we have 36=26+5+5=19+12+5=12+12+12.
MAPLE
g:=1/product(1-x^(5+7*j), j=0..20): gser:=series(g, x=0, 95): seq(coeff(gser, x, n), n=0..92); # Emeric Deutsch, Apr 14 2006
MATHEMATICA
nmax=100; CoefficientList[Series[Product[1/(1-x^(7*k+5)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)
CROSSREFS
Sequence in context: A375847 A372504 A135936 * A214578 A064272 A117479
KEYWORD
nonn
AUTHOR
Erich Friedman, Aug 07 2005
EXTENSIONS
Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015
STATUS
approved