[go: up one dir, main page]

login
A109655
Number of partitions of n^2 into up to n parts each no more than 2n, or of n(3n+1)/2 into exactly n distinct parts each no more than 3n.
5
1, 1, 3, 8, 33, 141, 676, 3370, 17575, 94257, 517971, 2900900, 16509188, 95220378, 555546058, 3273480400, 19456066175, 116521302221, 702567455381, 4261765991164, 25992285913221, 159303547578873, 980701254662294, 6061894625462492, 37609015174472628
OFFSET
0,3
LINKS
FORMULA
a(n) = A067059(n,2n) = A067059(2n,n).
Slightly less than but close to (27/4)^n*sqrt(3)/(2*Pi*n^2).
EXAMPLE
a(3) = 8 since 3^2=9 can be partitioned into 3+3+3, 4+3+2, 4+4+1, 5+4, 5+3+1, 5+2+2, 6+3, or 6+2+1, while 3*(3*3+1)/2=15 can be partitioned into 6+5+4, 7+5+3, 7+6+2, 8+6+1, 8+5+2, 8+4+3, 9+5+1, or 9+4+2.
MAPLE
b:= proc(n, i, t) option remember;
`if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0,
`if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1))))
end:
a:= n-> b(n*(3*n+1)/2, 3*n, n):
seq(a(n), n=0..20); # Alois P. Heinz, Jan 18 2012
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[i<t || n<t*(t+1)/2 || n>t*(2*i-t+1)/2, 0, If[n == 0, 1, b[n, i-1, t] + If[n<i, 0, b[n-i, i-1, t-1]]]]; a[n_] := b[n*(3*n+1)/2, 3*n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 05 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A161407. - Reinhard Zumkeller, Jun 10 2009
Row n=3 of A204459. - Alois P. Heinz, Jan 18 2012
Sequence in context: A120892 A195499 A225688 * A184255 A001120 A302629
KEYWORD
nonn
AUTHOR
Henry Bottomley, Aug 05 2005
EXTENSIONS
More terms from Alois P. Heinz, Jan 18 2012
STATUS
approved