[go: up one dir, main page]

login
A109046
a(n) = lcm(n, 5).
4
0, 5, 10, 15, 20, 5, 30, 35, 40, 45, 10, 55, 60, 65, 70, 15, 80, 85, 90, 95, 20, 105, 110, 115, 120, 25, 130, 135, 140, 145, 30, 155, 160, 165, 170, 35, 180, 185, 190, 195, 40, 205, 210, 215, 220, 45, 230, 235, 240, 245, 50, 255, 260, 265, 270, 55, 280, 285, 290
OFFSET
0,2
FORMULA
a(n) = n*5/gcd(n, 5) = 5*n/A109009(n) = 5*A060791(n).
G.f.: 5*x*(x^4+x^3+3*x^2+x+1)*(x^4+x^3-x^2+x+1) / ( (x-1)^2*(x^4+x^3+x^2+x+1)^2 ). - R. J. Mathar, Apr 18 2011
Sum_{k=1..n} a(k) ~ (21/10) * n^2. - Amiram Eldar, Nov 26 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 9*log(2)/25. - Amiram Eldar, Sep 08 2023
MATHEMATICA
a[n_] := LCM[n, 5]; Array[a, 60, 0] (* Amiram Eldar, Nov 26 2022 *)
LinearRecurrence[{0, 0, 0, 0, 2, 0, 0, 0, 0, -1}, {0, 5, 10, 15, 20, 5, 30, 35, 40, 45}, 60] (* Harvey P. Dale, Oct 08 2023 *)
PROG
(Sage) [lcm(n, 5)for n in range(0, 59)] # Zerinvary Lajos, Jun 07 2009
(Magma) [Lcm(n, 5): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jun 18 2005
STATUS
approved