[go: up one dir, main page]

login
A108414
Number of integer k:s for which max{x^(k-x) | x integer, 0<x<k} = n^(k-n).
0
1, 2, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6
OFFSET
1,2
COMMENTS
Consider the following triangle:
...................1
................1..-..2
............1......4..-..3
.........1......8..-..9.....4
......1....16.....27..-.16....5
....1...32.....81.--.64....25...6
.1...64...243..--256...125...36..7
1.128..729...1024---625...216..49.8
.............----..................
The first row is 1^1, the 2nd row is 1^2, 2^1, the 3rd row is 1^3, 2^2, 3^1 ... the m-th row is 1^m, ..., m^1. The maximum element in each row is marked. The marked elements lie in downward-sloping chains. This sequence gives the lengths of those chains.
CROSSREFS
Sequence in context: A030398 A030384 A067349 * A253250 A097477 A059572
KEYWORD
nonn
AUTHOR
Jonas Wallgren, Jul 04 2005
STATUS
approved