[go: up one dir, main page]

login
A108350
Number triangle T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*((j+1) mod 2).
3
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 32, 21, 6, 1, 1, 7, 31, 65, 65, 31, 7, 1, 1, 8, 43, 116, 161, 116, 43, 8, 1, 1, 9, 57, 189, 341, 341, 189, 57, 9, 1, 1, 10, 73, 288, 645, 842, 645, 288, 73, 10, 1, 1, 11, 91, 417, 1121, 1827, 1827, 1121, 417, 91
OFFSET
0,5
COMMENTS
Or as a square array read by antidiagonals, T(n,k) = Sum_{j=0..n} binomial(k,j)*binomial(n+k-j,k)*((j+1) mod 2).
A symmetric number triangle based on 1/(1-x^2).
The construction of a symmetric triangle in this example is general. Let f(n) be a sequence, preferably with f(0)=1. Then T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*f(j) yields a symmetric triangle. When f(n)=1^n, we get Pascal's triangle. When f(n)=2^n, we get the Delannoy triangle (see A008288). In general, f(n)=k^n yields a (1,k,1)-Pascal triangle (see A081577, A081578). Row sums of triangle are A100131. Diagonal sums of the triangle are A108351. Triangle mod 2 is A106465.
FORMULA
Row k (and column k) has g.f. (1+C(k,2)x^2)/(1-x)^(k+1).
EXAMPLE
Triangle rows begin
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 7, 4, 1;
1, 5, 13, 13, 5, 1;
1, 6, 21, 32, 21, 6, 1;
As a square array read by antidiagonals, rows begin
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 3, 7, 13, 21, 31, 43, ...
1, 4, 13, 32, 65, 116, 189, ...
1, 5, 21, 65, 161, 341, 645, ...
1, 6, 31, 116, 341, 842, 1827, ...
1, 7, 43, 189, 645, 1827, 4495, ...
PROG
(PARI) trgn(nn) = {for (n= 0, nn, for (k = 0, n, print1(sum(j=0, n-k, binomial(k, j)*binomial(n-j, k)*((j+1) % 2)), ", "); ); print(); ); } \\ Michel Marcus, Sep 11 2013
CROSSREFS
Sequence in context: A094525 A130671 A114197 * A086617 A094526 A088699
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 31 2005
STATUS
approved