[go: up one dir, main page]

login
A108255
Primes p such that little googol + p is prime.
1
277, 331, 577, 643, 811, 937, 1213, 1621, 2083, 2953, 4057, 4567, 4957, 5881, 6091, 6637, 7477, 7717, 8011, 8677, 10093, 10333, 10567, 10861, 11257, 11503, 11617, 12601, 13003, 13063, 14503, 15073, 15187, 15271, 15973, 16033, 16561, 16573
OFFSET
1,1
FORMULA
A little googol = 2^100.
MAPLE
googol:=2^100: select(p-> isprime(p) and isprime(googol+p), [$1..10^5]); # Muniru A Asiru, Feb 06 2018
MATHEMATICA
Select[Prime@ Range[2^11], PrimeQ[2^100 + #] &] (* Michael De Vlieger, Feb 05 2018 *)
PROG
(PARI) isok(p) = isprime(p) && isprime(2^100+p); \\ Michel Marcus, Feb 05 2018
(GAP) googol:= 2^100;; Filtered([1..10^6], p->IsPrime(p) and IsPrime(googol+p)); # Muniru A Asiru, Feb 06 2018
CROSSREFS
Sequence in context: A186466 A045022 A108253 * A152715 A139654 A046504
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Jun 18 2005
STATUS
approved