[go: up one dir, main page]

login
A107465
Numbers k such that 10^k*(66161819199+10^(k+10)) + 1 is prime.
0
3, 32, 96, 104, 603, 870, 1609, 2505, 4889, 5024, 5345, 14955
OFFSET
1,1
COMMENTS
These are non-palindromic strobogrammatic primes and they have all been certified. No more terms up to 8700. Primality proof for the largest (a "gigantic" prime): PFGW Version 20041001.Win_Stable (v1.2 RC1b) [FFT v23.8] Primality testing 10^5345*(66161819199+10^(5345+10))+1 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Calling Brillhart-Lehmer-Selfridge with factored part 34.91% 10^5345*(66161819199+10^(5345+10))+1 is prime! (15.1367s+0.0109s)
PROG
(PARI) is(n)=ispseudoprime(10^n*(66161819199+10^(n+10))+1) \\ Charles R Greathouse IV, Jun 13 2017
CROSSREFS
Cf. A007597.
Sequence in context: A197368 A114257 A197524 * A319219 A345687 A211224
KEYWORD
base,nonn,more
AUTHOR
Jason Earls, May 27 2005
EXTENSIONS
a(12) from Michael S. Branicky, Sep 21 2024
STATUS
approved