[go: up one dir, main page]

login
A107332
Expansion of x^2*(-1+x+x^2)/(-1+x+x^2-x^3+x^5).
1
0, 1, 0, 0, -1, -1, -1, -1, -1, -2, -3, -5, -7, -10, -14, -20, -29, -42, -61, -88, -127, -183, -264, -381, -550, -794, -1146, -1654, -2387, -3445, -4972, -7176, -10357, -14948, -21574, -31137, -44939, -64859, -93609, -135103, -194990, -281423, -406169, -586211, -846060, -1221092, -1762364
OFFSET
1,10
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-5) for n>=5.
O.g.f.: x^2*(-1+x+x^2)/(-1+x+x^2-x^3+x^5). - R. J. Mathar, Dec 02 2007
a(n) = A107293(n+2)-A107293(n+1)-A107293(n). - R. J. Mathar, Dec 17 2017
MAPLE
a[0]:=0:a[1]:=1:a[2]:=0:a[3]:=0:a[4]:=-1:
for n from 5 to 46 do a[n]:=a[n-1]+a[n-2]-a[n-3]+a[n-5] od:
seq(a[n], n=0..46);
MATHEMATICA
LinearRecurrence[{1, 1, -1, 0, 1}, {0, 1, 0, 0, -1}, 50] (* Harvey P. Dale, Oct 11 2015 *)
CROSSREFS
Sequence in context: A321728 A214077 A094984 * A002062 A005688 A241550
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Jun 08 2005
EXTENSIONS
Edited by N. J. A. Sloane, May 13 2006
New name using g.f. from Joerg Arndt, Dec 26 2022
STATUS
approved