OFFSET
3,1
LINKS
G. C. Greubel, Rows n = 3..52 of the triangle, flattened
FORMULA
T(n, 3) = abs(A061347(n)).
T(n, 4) = A093148(n-1).
T(n, n) = A000045(n).
From G. C. Greubel, Sep 11 2021: (Start)
T(n, 3) = A131534(n-2).
T(n, 5) = A060904(n).
T(n, 6) = A010125(n).
T(n, n-1) = T(n, n-2) = A000012(n).
T(n, n-3) = A093148(n-5).
T(n, n-4) = A093148(n-5).
T(n, n-5) = A060904(n-5).
T(n, n-6) = A010125(n-6). (End)
EXAMPLE
Triangle begins as:
2;
1, 3;
1, 1, 5;
2, 1, 1, 8;
1, 1, 1, 1, 13;
1, 3, 1, 1, 1, 21;
2, 1, 1, 2, 1, 1, 34;
1, 1, 5, 1, 1, 1, 1, 55;
1, 1, 1, 1, 1, 1, 1, 1, 89;
2, 3, 1, 8, 1, 3, 2, 1, 1, 144;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 233;
1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 377;
2, 1, 5, 2, 1, 1, 2, 5, 1, 2, 1, 1, 610;
MATHEMATICA
T[n_, k_]:= GCD[Fibonacci[n], Fibonacci[k]];
Table[T[n, k], {n, 3, 18}, {k, 3, n}]//Flatten (* G. C. Greubel, Sep 11 2021 *)
PROG
(Sage)
def T(n, k): return gcd(fibonacci(n), fibonacci(k))
flatten([[T(n, k) for k in (3..n)] for n in (3..18)]) # G. C. Greubel, Sep 11 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, May 15 2005
STATUS
approved