OFFSET
0,2
COMMENTS
a(n) is the number of parts equal to 1 or 2 in all the compositions of n + 1. Example: a(2)=7 because in the compositions [3], [1,2], [2,1], and [1,1,1] we have 0 + 2 + 2 + 3 = 7 parts equal to 1 or 2. Equivalently, a(n) = Sum_{k>=0} k*A296559(n+1,k). - Emeric Deutsch, Dec 16 2017
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-4).
FORMULA
a(0)=1, a(1)=3, and a(n) = (3*n + 8)*2^(n-3), for n>=2. [simplified by Ralf Stephan, Nov 16 2010]
a(n) = 4*a(n-1) - 4*a(n-2) for n > 3. - Colin Barker, Dec 16 2017
E.g.f.: (exp(2*x)*(4 + 3*x) + x)/4. - Stefano Spezia, May 14 2023
MAPLE
1, 3, seq((3*n+8)*2^(n-3), n = 2 .. 27); # Emeric Deutsch, Dec 16 2017
MATHEMATICA
Join[{1, 3}, LinearRecurrence[{4, -4}, {7, 17}, 30]] (* Jean-François Alcover, Dec 16 2017 *)
PROG
(PARI) x='x+O('x^99); Vec((1+x)*(1-x)^2/(1-2*x)^2) \\ Altug Alkan, Dec 16 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 03 2005
STATUS
approved