OFFSET
0,3
COMMENTS
LINKS
FORMULA
a(0)=0, a(1)=1, a(p_i) = A014580(a(i)) for primes p_i with index i and for composites n = p_i^e_i * p_j^e_j * p_k^e_k * ..., a(n) = A048723(a(p_i), a(e_i)) X A048723(a(p_j), a(e_j)) X A048723(a(p_k), a(e_k)) X ..., where X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and A048723(n, y) raises the n-th GF(2)[X] polynomial to the y:th power.
EXAMPLE
a(5) = 7, as 5 is the 3rd prime, a(3)=3 and the third irreducible GF(2)[X] polynomial x^2+x+1 is encoded as A014580(3) = 7. a(11) = 25, as 11 is the 5th prime, a(5)=7 and the seventh irreducible GF(2)[X] polynomial x^4+x^3+1 is encoded as A014580(7) = 25. a(32) = a(2^5) = A048723(a(2),a(5)) = A048723(2,7) = 128.
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 09 2005
STATUS
approved