OFFSET
0,2
COMMENTS
Equals the self-convolution 6th power of A106225. What is the frequency of occurrence of the nonzero digits?
FORMULA
A(z)=0 at z=-0.18172379526003557530948965401615522817...
EXAMPLE
A(x) = 1 + 6*x + 3*x^2 + 2*x^3 + 3*x^4 + 3*x^8 + 4*x^9 + 3*x^10 +...
A(x)^(1/6) = 1 + x - 2*x^2 + 7*x^3 - 27*x^4 + 114*x^5 - 506*x^6 +-...
A106225 = {1,1,-2,7,-27,114,-506,2322,-10919,52316,-254369,...}.
PROG
(PARI) {a(n)=local(A=1+6*x); if(n==0, 1, for(j=1, n, for(k=0, 5, t=polcoeff((A+k*x^j+x*O(x^j))^(1/6), j); if(denominator(t)==1, A=A+k*x^j; break))); return(polcoeff(A+x*O(x^n), n)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 01 2005
STATUS
approved