[go: up one dir, main page]

login
A106053
Next-to-central column of triangle in A059317.
6
0, 0, 1, 2, 8, 22, 72, 218, 691, 2158, 6833, 21612, 68726, 218892, 699197, 2237450, 7174018, 23038582, 74097134, 238625222, 769407486, 2483532218, 8024499657, 25951580444, 83999410292, 272098963300, 882045339733, 2861184745710, 9286923094550, 30161343633746
OFFSET
0,4
COMMENTS
Number of h steps in all paths in the first quadrant from (0,0) to (n-1,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=8 because in the 6 (=A128720(3)) paths hhh, hH, Hh, hUD, UhD and UDh we have altogether 8 h-steps. a(n) = Sum_{k=0..n-1} k*A132277(n-1,k). - Emeric Deutsch, Sep 03 2007
Number of paths in the right half-plane from (0,0) to (n-1,1) consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=8 because we have hhU, HU, hUh, Uhh, UH, DUU, UDU and UUD. Number of h-steps in all paths in the first quadrant from (0,0) to (n-1,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=8 because in the 6 (=A128720(3)) paths from (0,0) to (3,0), namely, hhh, hH, Hh, hUD, UhD and UDh, we have altogether 8 h-steps. a(n) = Sum_{k=0..n-1} k*A132277(n-1,k). - Emeric Deutsch, Sep 03 2007
LINKS
W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
José L. Ramírez, The Pascal Rhombus and the Generalized Grand Motzkin Paths, arXiv:1511.04577 [math.CO], 2015.
FORMULA
G.f.: (1 - z - z^2 - sqrt((1+z-z^2)*(1-3z-z^2)))/(2*sqrt((1+z-z^2)*(1-3z-z^2))). - Emeric Deutsch, Sep 03 2007
G.f.: (1-z-z^2)/(2*sqrt((1+z-z^2)*(1-3z-z^2))) - 1/2. - Emeric Deutsch, Sep 03 2007
MAPLE
g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/sqrt((1+z-z^2)*(1-3*z-z^2)): gser:=series(g, z=0, 33); seq(coeff(gser, z, n), n=0..29); # Emeric Deutsch, Sep 03 2007
g:=((1-z-z^2)*1/2)/sqrt((1+z-z^2)*(1-3*z-z^2))-1/2: gser:=series(g, z=0, 33): seq(coeff(gser, z, n), n=0..30); # Emeric Deutsch, Sep 03 2007
MATHEMATICA
t[0, 0] = t[1, 0] = t[1, 1] = t[1, 2] = 1;
t[n_ /; n >= 0, k_ /; k >= 0] /; k <= 2n := t[n, k] = t[n-1, k] + t[n-1, k-1] + t[n-1, k-2] + t[n-2, k-2];
t[n_, k_] /; n<0 || k<0 || k>2n = 0;
a[n_] := t[n-1, n-2];
Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Aug 07 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 28 2005
STATUS
approved