OFFSET
0,7
COMMENTS
T(n,k) is the number of nondecreasing Dyck paths of semilength n, having k peaks at height 1. Example: T(4,2)=3 because we have UDUDUUDD, UDUUDDUD and UUDDUDUD, where U=(1,1) and D=(1,-1). sum(T(n,k),k=0..n)=fibonacci(2n-1) (A001519). sum(k*T(n,k),k=0..n)=fibonacci(2n-1) (A001519). T(n,0)=A027994(n-2) for n>=2.
REFERENCES
E. Deutsch and H. Prodinger, A bijection between directed column-convex polyominoes and ordered trees of height at most three, Theoretical Comp. Science, 307, 2003, 319-325.
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
FORMULA
G.f.=(1-2z)^2/[(1-3z+z^2)(1-z-z^2-tz+tz^2)].
EXAMPLE
Triangle begins:
1;
0,1;
1,0,1;
2,2,0,1;
6,3,3,0,1;
MAPLE
G:=(1-2*z)^2/(1-3*z+z^2)/(1-z-z^2-t*z+t*z^2):Gser:=simplify(series(G, z=0, 14)): P[0]:=1: for n from 1 to 12 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 12 do seq(coeff(t*P[n], t^k), k=1..n+1) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Apr 26 2005
STATUS
approved