[go: up one dir, main page]

login
A105408
Indices n of primes p(n), p(n+4) such that p(n)+1 and p(n+4)+1 have the same largest prime factor.
0
1, 3, 5, 16, 64, 85, 266, 547, 1709, 1771, 4415, 9545, 13129, 24130, 34201, 213122, 396981, 543586, 555301, 609182, 1040051, 1870869, 2547634, 3052012, 5076662, 8530768, 9773479, 18563382, 26505870, 89046072, 169660944, 193691856, 200228233, 359241899, 597825925, 914450195, 1020520062, 1585841242, 1970793485
OFFSET
2,2
EXAMPLE
p(1)+1=3 and p(5)+1=12 have the same largest prime factor.
PROG
(PARI) \prime indices such that gd of prime(x)+ k and prime(x+m) + k are equal divpm1(n, m, k) = { local(x, l1, l2, v1, v2); for(x=2, n, v1 = ifactor(prime(x)+ k); v2 = ifactor(prime(x+m)+k); l1 = length(v1); l2 = length(v2); if(v1[l1] == v2[l2], print1(x", ") ) ) } ifactor(n) = \Vector of the prime factors of n { local(f, j, k, flist); flist=[]; f=Vec(factor(n)); for(j=1, length(f[1]), for(k = 1, f[2][j], flist = concat(flist, f[1][j]) ); ); return(flist) }
CROSSREFS
Sequence in context: A208819 A038120 A192911 * A291963 A375911 A242104
KEYWORD
nonn
AUTHOR
Cino Hilliard, May 01 2005
EXTENSIONS
More terms from Erich Friedman, Aug 26 2005
Corrected and extended by Donovan Johnson, Apr 03 2008
STATUS
approved