OFFSET
1,1
COMMENTS
We have the polynomial factorization: n^20 + 1 = (n^4 + 1) * (n^16 - n^12 + n^8 - n^4 + 1). Hence after the initial n=1 prime, the binomial can never be prime. It can be semiprime iff n^4+1 is prime and (n^16 - n^12 + n^8 - n^4 + 1) is prime.
LINKS
Robert Price, Table of n, a(n) for n = 1..1405
FORMULA
a(n)^20 + 1 is semiprime (A001358).
EXAMPLE
2^20 + 1 = 1048577 = 17 * 61681,
4^20 + 1 = 1099511627777 = 257 * 4278255361,
46^20 + 1 = 1799519816997495209117766334283777 = 4477457 * 401906666439788301510827761,
1434^20 + 1 =
1352019721694375552250489804528860551814233886722212960509362177 =
4228599998737 * 319732233386510278346888399489424537759394853595121.
MATHEMATICA
Select[Range[1000000], PrimeQ[#^4 + 1] && PrimeQ[(#^20 + 1)/(#^4 + 1)] &] (* Robert Price, Mar 09 2015 *)
PROG
(Magma)IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1000] | IsSemiprime(n^20+1)] // Vincenzo Librandi, Dec 21 2010
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Apr 25 2005
EXTENSIONS
a(9)-a(44) from Robert Price, Mar 09 2015
STATUS
approved