%I #16 May 04 2020 09:32:54
%S 0,1,0,11,10,1,100,111,110,101,0,1011,1010,1001,1100,1111,1110,1101,
%T 1000,11,10010,10001,10100,10111,10110,10101,10000,11011,11010,11001,
%U 11100,11111,11110,11101,11000,10011,10,100001,100100,100111,100110
%N Binary equivalents of A105033.
%C Number of 1's in a(n) is A089398(n). - _Philippe Deléham_, Apr 05 2005.
%C The version 0, 01, 000, 0011, 00010, 000001, ... is obtained by interchanging 0 and 1 in A103581: 1, 10, 111, 1100, 11101, 111110, .... - _Philippe Deléham_, Apr 07 2005
%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>].
%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sloane/sloane300.html">Sloping binary numbers: a new sequence related to the binary numbers</a>, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
%Y Cf. A105033, A102370.
%Y Cf. triangular array in A103589.
%K nonn,base
%O 0,4
%A _N. J. A. Sloane_, Apr 04 2005
%E More terms from _Benoit Cloitre_, Apr 04 2005