[go: up one dir, main page]

login
A105025
Write numbers in binary under each other; to get the next block of 2^k (k >= 0) terms of the sequence, start at 2^k, read diagonals in downward direction and convert to decimal.
12
0, 1, 3, 2, 4, 7, 6, 5, 11, 10, 9, 12, 15, 14, 13, 8, 18, 17, 20, 23, 22, 21, 16, 27, 26, 25, 28, 31, 30, 29, 24, 19, 33, 36, 39, 38, 37, 32, 43, 42, 41, 44, 47, 46, 45, 40, 35, 50, 49, 52, 55, 54, 53, 48, 59, 58, 57, 60, 63, 62, 61, 56, 51, 34, 68, 71, 70, 69, 64, 75, 74, 73, 76
OFFSET
0,3
COMMENTS
This is a permutation of the nonnegative integers.
a(A214433(n)) = A105027(A214433(n)); a(A214489(n)) = A105029(A214489(n)). - Reinhard Zumkeller, Jul 21 2012
LINKS
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
EXAMPLE
........0
........1
.......10
.......11
......100 <- Starting here, the downward diagonals
......101 read 100, 111, 110, 101, giving the block 4, 7, 6, 5.
......110
......111
.....1000
.....1001
.....1010
.....1011
.........
MAPLE
a:=proc(i, j) if j=1 and i<=16 then 0 else convert(i+15, base, 2)[7-j] fi end: seq(a(i, 2)*2^4+a(i+1, 3)*2^3+a(i+2, 4)*2^2+a(i+3, 5)*2+a(i+4, 6), i=1..16); # this is a Maple program (not necessarily the simplest) only for one block of (2^4) numbers # Emeric Deutsch, Apr 16 2005
MATHEMATICA
numberOfBlocks = 7; bloc[n_] := Join[ Table[ IntegerDigits[k, 2], {k, 2^(n-1), 2^n-1}], Table[ Rest @ IntegerDigits[k, 2], {k, 2^n, 2^n+n}]]; Join[{0, 1}, Flatten[ Table[ Table[ Diagonal[bloc[n], k] // FromDigits[#, 2]&, {k, 0, -2^(n-1)+1, -1}], {n, 2, numberOfBlocks}]]] (* Jean-François Alcover, Nov 03 2016 *)
PROG
(Haskell)
import Data.Bits ((.|.), (.&.))
a105025 n = foldl (.|.) 0 $ zipWith (.&.)
a000079_list $ reverse $ enumFromTo n (n - 1 + a070939 n)
-- Reinhard Zumkeller, Jul 21 2012
CROSSREFS
Cf. A105271 (fixed points), A214416 (inverse).
Sequence in context: A261147 A212952 A246259 * A129594 A214416 A170950
KEYWORD
nonn,nice,base
AUTHOR
N. J. A. Sloane, Apr 03 2005
EXTENSIONS
More terms from Emeric Deutsch, Apr 16 2005
STATUS
approved