OFFSET
0,4
COMMENTS
Diagonal sums of Riordan array (1/(1+x+x^2+x^3+x^4),x/(1+x+x^2+x^3+x^4)).
Convolution of (n+1)(-1)^n and A010892.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-1,0,-1,-1).
FORMULA
a(n) = floor((n + 3)/3)*(-1)^n.
a(n) = Sum_{k=0..n} ((n - k + 1)(-1)^(n-k)*2sin(Pi*k/3 + Pi/3)/sqrt(3)).
G.f.: 1/((1 + x)^2*(1 - x + x^2)).
E.g.f.: exp(-x)*(6 - 3*x + exp(3*x/2)*(3*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)))/9. - Stefano Spezia, Feb 12 2023
Sum_{n>=0} 1/a(n) = log(2). - Amiram Eldar, Feb 14 2023
MATHEMATICA
CoefficientList[ Series[1/(1 + x + x^3 + x^4), {x, 0, 80}], x] (* Robert G. Wilson v, Mar 24 2005 *)
LinearRecurrence[{-1, 0, -1, -1}, {1, -1, 1, -2}, 90] (* Harvey P. Dale, Jan 18 2019 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 16 2005
STATUS
approved