OFFSET
0,2
LINKS
Robert Israel, Table of n, a(n) for n = 0..1855
FORMULA
G.f.: 1/sqrt(1-12*x^2)+(1-sqrt(1-12*x^2))/(2*x).
a(n) = sum{k=0..floor(n/2), 3^(n-k) * A000108(k) * C(k+1, n-k)}.
D-finite with recurrence: -(n+1)*a(n)+2*(n-1)*a(n-1) +12*(2n-3)*a(n-2) +24(2-n)*a(n-3) + 144*(4-n)*a(n-4)=0. - R. J. Mathar, Dec 14 2011
a(n) ~ 2^(n + 1/2) * 3^(n/2) / sqrt(Pi*n) if n is even and a(n) ~ 2^(n + 1/2) * 3^((n+1)/2) / (sqrt(Pi) * n^(3/2)) if n is odd. - Vaclav Kotesovec, Nov 19 2021
MAPLE
rec:= -(n+1)*a(n)+2*(n-1)*a(n-1)+12*(2*n-3)*a(n-2)+24*(2-n)*a(n-3)+144*(4-n)*a(n-4):
f:= gfun:-rectoproc({rec=0, a(0) = 1, a(1) = 3, a(2) = 6, a(3) = 9}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Sep 13 2020
MATHEMATICA
CoefficientList[Series[(Sqrt[1-12x^2]+12x^2+2x-1)/(2x Sqrt[1-12x^2]), {x, 0, 30}], x] (* Harvey P. Dale, Aug 06 2022 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 23 2005
STATUS
approved