[go: up one dir, main page]

login
A103807
Primes p such that 2*p-27, 2*p+27, 2*p-33 and 2*p+33 are primes or -1 times primes.
0
2, 5, 7, 23, 37, 103, 313, 457, 733, 863, 2053, 2063, 2917, 4723, 7187, 7817, 8017, 9007, 9473, 9973, 10687, 11527, 11923, 13477, 13883, 15787, 26833, 31477, 34897, 36097, 36353, 36493, 39937, 44417, 46447, 47623, 52103, 53377, 55813, 60737
OFFSET
1,1
COMMENTS
Intersection of A103805 and A103806.
MATHEMATICA
Intersection[Select[Range[100000], PrimeQ[ # ]&&PrimeQ[2#+33]&&PrimeQ[2#-33]&&PrimeQ[ # ]&&PrimeQ[2#+27]&&PrimeQ[2#-27]&]]
okQ[n_]:=Module[{x=2n}, And@@PrimeQ[{x-27, x+27, x-33, x+33}]]; Select[Prime[Range[7000]], okQ] (* Harvey P. Dale, Jan 23 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(61000) | IsPrime(2*p-27) and IsPrime(2*p+27) and IsPrime(2*p-33) and IsPrime(2*p+33) ];
(PARI) {forprime(p=2, 61000, if(isprime(abs(2*p-27))&&isprime(2*p+27)&&isprime(abs(2*p-33))&&isprime(2*p+33), print1(p, ", ")))}
CROSSREFS
Sequence in context: A103060 A256247 A243595 * A099228 A182474 A106018
KEYWORD
nonn
AUTHOR
Zak Seidov, Feb 16 2005
EXTENSIONS
Definition clarified, comment adjusted, MAGMA and PARI programs added by Klaus Brockhaus, Mar 21 2010
STATUS
approved