OFFSET
2,6
COMMENTS
0# = 1# = 2 by convention.
FORMULA
n# = product of primes <= n. 0#=1#=2. n#/((p-r)# r#) is analogous to the number of combinations of n things taken r at a time: C(n, r) = n!/((n-r)! r!) where factorial ! is replaced by primorial # and n is replaced with the preceding prime to n.
PROG
(PARI) c(n, r) = { local(p); forprime(p=2, n, print1(floor(primorial(p)/primorial(p-r)/primorial(r)+.0)", ") ) } primorial(n) = \ The product of primes <= n using the pari primelimit. { local(p1, x); if(n==0||n==1, return(2)); p1=1; forprime(x=2, n, p1*=x); return(p1) }
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Feb 25 2005
STATUS
approved