[go: up one dir, main page]

login
A102742
Elite primes: a prime number p is called elite if only a finite number of Fermat numbers 2^(2^n)+1 are quadratic residues mod p.
9
3, 5, 7, 41, 15361, 23041, 26881, 61441, 87041, 163841, 544001, 604801, 6684673, 14172161, 159318017, 446960641, 1151139841, 3208642561, 38126223361, 108905103361, 171727482881, 318093312001, 443069456129, 912680550401, 1295536619521, 1825696645121, 2061584302081
OFFSET
1,1
COMMENTS
Křížek, Luca, Shparlinski, & Somer show that a(n) >> n log^2 n. - Charles R Greathouse IV, Jan 25 2017
Let d = 2^r*d' be the multiplicative order of 2 modulo p. Note that 2^2^s == 2^d == 1 (mod p), so p divides none of.
LINKS
Alain Chaumont and Tom Mueller, All Elite Primes Up to 250 Billion, J. Integer Sequences, Vol. 9 (2006), Article 06.3.8.
Matthew Just, On upper bounds for the count of elite primes, arXiv:2102.00906 [math.NT], 2021.
Michal Křížek, Florian Luca, Igor E. Shparlinski, and Lawrence Somer, On the complexity of testing elite primes, Journal of Integer Sequences, Vol. 14 (2011), Article 11.1.2, 5 pp.
Xiaoquin Li, Verifying Two Conjectures on Generalized Elite Primes, JIS 12 (2009) 09.4.7.
Dennis Martin, Elite Prime Search. [Broken link]
Dennis Martin, Elite Prime Search. [Cached copy, with permission of author]
Dennis Martin, Elite and Anti-Elite Prime Search Methodology [Cached copy, with permission of author]
Tom Müller, Searching for large elite primes, Experimental Mathematics, Vol. 15, Nol. 2 (2006), pp. 183-186.
Tom Muller and A. Reinhart, On generalized Elite Primes, Journal of Integer Sequences, Vol. 11 (2008), Article 08.3.1.
Tom Müller, On the Fermat Periods of Natural Numbers, Journal of Integer Sequences, Vol. 13 (2010), Article 10.9.5.
Tom Müller, On the Exponents of Non-Trivial Divisors of Odd Numbers and a Generalization of Proth's Primality Theorem, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.7.
FORMULA
Sum_{n>=1} 1/a(n) = A344785. - Amiram Eldar, May 30 2021
PROG
(PARI) list_upto(N)={forprime(p=3, N, r=2^valuation(p-1, 2); a=Mod(3, p); v=List(); k=0; while(1, listput(v, a); a=(a-1)^2+1; for(j=1, #v, if(v[j]==a, k=j; break(2)))); for(i=k, #v, znorder(v[i]) % r != 0 && next(2)); print1(p, ", "))} \\ Slow, only for illustration, Jeppe Stig Nielsen, Jan 28 2020
(PARI) isElite(n) = if(isprime(n) && n > 2, my(d = znorder(Mod(2, n)), StartPoint = valuation(d, 2), LengthTest = znorder(Mod(2, d >> StartPoint))); for(i = StartPoint, StartPoint + LengthTest - 1, if(issquare(Mod(2, n)^2^i + 1), return(0))); 1, 0) \\ Jianing Song, May 15 2024
CROSSREFS
Cf. A128852, A344785. Subsequence of A129802.
Sequence in context: A130536 A261511 A146972 * A363965 A089044 A117646
KEYWORD
nonn
AUTHOR
Tom Mueller, Feb 08 2005; extended Jun 16 2005
EXTENSIONS
a(17) from Tom Mueller, Jul 20 2005
a(18)-a(21) from Tom Mueller, Apr 18 2006
6 further terms from Tom Mueller, Apr 16 2007
STATUS
approved