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Let 1, 2, 3, 1, 2, 3, 1, 2, 3 be independent normally distributed

random variables with mean 0 and variance 1. The points (1 1), (2 2), (3 3)

constitute the vertices of a triangle in Euclidean 2-space (the plane); the points

(1 1 1), (2 2 2), (3 3 3) constitute the vertices of a triangle in Euclidean

3-space. A number of parameters (for example, sides, angles, perimeter and area)

describe the triangle, but the corresponding probability density functions are not

well-known. We attempt to remedy this situation in this essay. Perhaps the most

famous results for random Gaussian triangles are the following [1, 2]:

P(a Gaussian triangle in 2-space is obtuse) = 34 = 075

P(a Gaussian triangle in 3-space is obtuse) = 1− 3
√
3(4) = 05865033284

which translate into statements about the maximum angle exceeding 2. Consider,

however, an arbitrary angle  in a triangle. What is its first moment E()? This

turns out to be trivial. What is its second moment E(2)? This is more difficult,

even in 2 dimensions, and the answer is apparently new. Our essay, the first in a

series, arises in an effort to expand upon [3].

0.1. Sides. Let , ,  denote the sides of a random Gaussian triangle. The

trivariate density (  ) for , ,  in 2 dimensions is [4]⎧⎪⎪⎨⎪⎪⎩
2

3

  p
(+  + )(−+  + )(−  + )(+  − )

exp

µ
−1
6
(2 + 2 + 2)

¶
if |− |    + 

0 otherwise

and we shall give an elementary proof of this later. The condition |−|    +

is equivalent to |− |    +  and to |− |    +  via the Law of Cosines.

As a consequence, the univariate density for  corresponds to Rayleigh’s distribution:



2
exp

µ
−

2

4

¶
   0
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and [5, 6]

E() =
√
 = 17724538509 E(2) = 4

E( ) = 4

µ
1

2

¶
− 3
2


µ
1

2

¶
= 33412233051

where

() =

2Z
0

1q
1− 2 sin()2

 =

1Z
0

1q
(1− 2)(1− 22)



() =

2Z
0

q
1− 2 sin()2  =

1Z
0

r
1− 22

1− 2


are complete elliptic integrals of the first and second kind [7]. The cross-correlation

coefficient

( ) =
Cov( )p
Var()Var()

=
E( )− 

4− 
= 02325593465

is quite small, indicating weak positive dependency. Interestingly, (2 2) = 14 =

025 since 2, 2 are quadratic forms in normal variables and classical theory applies

[8, 9].

The trivariate density for , ,  in 3 dimensions is [4]⎧⎨⎩
√
3

9
   exp

µ
−1
6
(2 + 2 + 2)

¶
if |− |    + 

0 otherwise

which is surprisingly simpler than the corresponding result in 2 dimensions. As

a consequence, the univariate density for  corresponds to the Maxwell-Boltzmann

distribution:
2

2
√

exp

µ
−

2

4

¶
   0

and

E() =
4√

= 22567583341 E(2) = 6

E( ) = 2 +
6
√
3


= 53079733725

( ) =
−8 + 3√3 + 

−8 + 3 = 02370510252 (2 2) =
1

4
= 025
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0.2. Perimeter and Area. For perimeter  +  + , the density is a double

integral:
Z
0

−Z
0

(− −   )     0

which we have not attempted to evaluate. Thus only moments are given. In 2

dimensions,

E(perimeter) = 3
√
 = 53173615527

E(perimeter
2) = E((+ + )2)

= 3E(
2) + 6E( )

= 12 + 24

µ
1

2

¶
− 9

µ
1

2

¶
= 320473398308

and in 3 dimensions,

E(perimeter) =
12√

= 67702750025

E(perimeter
2) = 30 +

36
√
3


= 498478402351

More can be said about area (14)
p
(+ + )(−+ + )(− + )(+ − ).

In 2 dimensions, area can be proved to be exponentially distributed, with density [10]

2√
3
exp

µ
− 2√

3


¶
   0

The formula given in [11] is unfortunately incorrect. In particular,

E(area) =

√
3

2
= 08660254037 E(area2) =

3

2
= 15

A proposed density in [12] for 3 dimensional area also seems to be wrong. We find

instead

E(area) =
√
3 = 17320508075 E(area2) =

9

2
= 45

and provide experimental verification elsewhere [13].
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0.3. Angles. Let , ,  denote the angles of a random Gaussian triangle. Of

course,  +  +  = , thus  can be eliminated from consideration. The bivariate

density ( ) for ,  in 2 dimensions is [14]⎧⎨⎩
6



sin() sin() sin(+ )

(sin()2 + sin()2 + sin(+ )2)
2

if 0    , 0     and +   

0 otherwise

and we shall confirm this later. The univariate density for  was first discovered by

W. S. Kendall [15], via a fairly geometric argument, but has never appeared explicitly

in the open literature (the closest was [16]; see also [17]). Starting from the bivariate

density, we obtain the univariate density via

6



−Z
0

sin() sin() sin(+ )

(sin()2 + sin()2 + sin(+ )2)
2


= 6


−Z
0

cos() sin()

2(4−cos()2)(sin()2+sin()2+sin(+)2)

+ 6


−Z
0

³
sin() sin() sin(+)

(sin()2+sin()2+sin(+)2)2
− cos() sin()

2(4−cos()2)(sin()2+sin()2+sin(+)2)

´


=
3



cos()

(4− cos()2)32
µ


2
+ arcsin

µ
cos()

2

¶¶
+
3



1

4− cos()2 

Call this latter expression (). Now, since 3E() = E( +  + ) = , we have

E() = 3. It is harder to show that

E(
2) =

7

36
2 − 1

2
Li2

µ
1

4

¶
= 17852634251

where

Li2() =

∞X
=1



2
= −

Z
0

ln(1− )




is the dilogarithm function [18]. Also, since 3Var()+6Cov( ) = Var(++) =

0, we have ( ) = −12; therefore

E() =
5

72
2 +

1

4
Li2

µ
1

4

¶
= 07523023542



Random Triangles 5

Finally,

() =

Z
0

()  =
1



sin()

(4− cos()2)12
µ


2
+ arcsin

µ
cos()

2

¶¶
+
1




which implies that P(  2) = 1 − (2) = 14 = 025, where  is arbitrary.

This is equal to (13)P(max(  )  2) because a triangle can have at most one

obtuse angle.

The bivariate density for ,  in 3 dimensions is new, as far as we know:⎧⎨⎩
24
√
3



sin()2 sin()2 sin(+ )2

(sin()2 + sin()2 + sin(+ )2)
3

if 0    , 0     and 0  +   

0 otherwise.

The univariate density for  is obtained similarly:

24
√
3



−Z
0

sin()2 sin()2 sin(+ )2

(sin()2 + sin()2 + sin(+ )2)
3


= 24
√
3



−Z
0

(2+cos()2) sin()2

4(4−cos()2)2(sin()2+sin()2+sin(+)2)

+24
√
3



−Z
0

µ
sin()2 sin()2 sin(+)2

(sin()2+sin()2+sin(+)2)3
− (2+cos()2) sin()2

4(4−cos()2)2(sin()2+sin()2+sin(+)2)

¶


=
6
√
3



(2 + cos()2) sin()

(4− cos()2)52
µ


2
+ arcsin

µ
cos()

2

¶¶
+
9
√
3



cos() sin()

(4− cos()2)2 

Call this latter expression (). We observe that () = −√30() and wonder about
the meaning of such a connection. As before, E() = 3. It follows that

E(
2) =



3

³
 −
√
3
´
= 14760687694

E() =


6

√
3 = 09068996821

Finally,

P(  2) = 1 +
√
3 ((2)− (0)) =

1

3
−
√
3

4
= 01955011094

where  is arbitrary. This again is equal to (13)P(max(  )  2).
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0.4. Order Statistics. Wewill, for brevity’s sake, study only maximum/minimum

angles in two dimensions and only maximum/minimum sides in three dimensions.

Define ̃() to be

3



cos()

(4− cos()2)32
Ã


2
− arcsin

µ
cos()

2

¶
− 2 arctan

Ã
3 cos()p
4− cos()2

!!

+
3



1− 4 cos()2
(4− cos()2)(1 + 2 cos()2)

which is positive for 3    2. Given   0,   0, +   , the angle  is

maximum if    and    − − . Hence the density for the maximum angle is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
3

Z
−2

( ) if 3    2

3

−Z
0

( ) if 2    

=

½
3̃() if 3    2

3() if 2    

after breaking up the integral of ( ) precisely as outlined earlier. This density

again was first discovered by Kendall [15] using a different approach. Incidentally,

the identity

arcsin

µ
cos()

2

¶
= arctan

Ã
cos()p
4− cos()2

!
might lead to a more natural expression for ̃(). The value 3() = 3 − 1√3 =
03775793893 is called the shape constant (or first collinearity constant) for planar

Gaussian triangles [16, 17].

Define () to be

3



cos()

(4− cos()2)32
Ã
 − arcsin

Ãp
4− cos()2 sin()2

2

!
− 2 arctan

Ã
2 + cos()2

cos()
p
4− cos()2

!!

−3


1− 4 cos()2
(4− cos()2)(1 + 2 cos()2)

which is positive for 0    3. The angle  is minimum if    and   −−.
Hence the density for the minimum angle is

3

−2Z


( ) = 3()
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after similar breakup. This result is evidently new. Moments for these distributions

remain open.

Advancing up to three dimensions, the density for the maximum side is [4]

3

2
√


"
2

r
3



³
−

22 − −
23
´
+  −

24 erf

Ã√
3

6

!#
for   0, and the density for the minimum side is

3

2
√


"
2

r
3



³
−

22 − −
2
´
+  −

24 erfc

Ã√
3

2

!#
where erf, erfc are the error and complementary error functions [19].

0.5. Trivariate Details. Our proof closely follows [20]. Consider sides ,  of a

random Gaussian triangle in the plane. Using

2 = (2 −1)
2 + (2 − 1)

2 2 = (3 −1)
2 + (3 − 1)

2

we picture vectors ,  emanating from (1 1) to (2 2), (3 3), respectively.

Define 0    2 to be the angle between vector and the -axis; define 0    2

likewise. Observe that

( ) =

µ
2 −1√

2

3 −1√

2

¶
 ( ) =

µ
2 − 1√

2

3 − 1√

2

¶
are independent random vectors satisfying

( ) ( ) ∼ 

µµ
0

0

¶


µ
1 1

2
1
2
1

¶¶


Define  = 24 and  = 24. Then

 =
√
2 cos()  =

√
2 sin()  =

√
2 cos()  =

√
2 sin()

and conversely

 =
2 + 2
2

  =
2 + 2
2

 tan() =



 tan() =






The Jacobian matrix of the transformation (   ) 7→ (   ) is

 =

⎛⎜⎜⎜⎜⎜⎝
  0 0

0 0  

− 

2 + 2



2 + 2
0 0

0 0 − 

2 + 2



2 + 2

⎞⎟⎟⎟⎟⎟⎠
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For example,

sec()
2 


=




tan() =








= −

2

implies that



= − cos()2 

2
= − 2

2



2
= − 

2 + 2


As another example,

sec()
2


=




tan() =








=
1



implies that



= cos()

2 1


=

2
2

1


=



2 + 2


Since the absolute determinant | | = 1, changing variables from (   ) to

(   ) is easily performed. The density of ( ) gives rise to

1

2
q
1− (1

2
)2
exp

"
− 1

2
¡
1− (1

2
)2
¢ ¡2 − 2(12) + 2

¢#

=
1√
3
exp

∙
−2
3

¡
2 −  + 2

¢¸
=

1√
3
exp

∙
−2
3

¡
2 cos()

2 −√2
√
2 cos() cos() + 2 cos()

2
¢¸

=
1√
3
exp

∙
−4
3

¡
 cos()

2 −√ cos() cos() +  cos()
2
¢¸

and the density of ( ) likewise gives rise to

1√
3
exp

∙
−2
3

¡
2 −  + 2

¢¸
=

1√
3
exp

∙
−4
3

¡
 sin()

2 −√ sin() sin() +  sin()
2
¢¸



By independence, the density of (   ) is

1

32
exp

∙
−4
3
( −√ cos( − ) + )

¸
where 0    2, 0    2.
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We move toward integrating out . Let  = − . The Jacobian matrix of the

transformation (   ) 7→ (   ) is

 =

⎛⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 −1
0 0 1 0

⎞⎟⎟⎠
and || = 1, hence the density of (   ) is

1

32
exp

∙
−4
3
( −√ cos() + )

¸
where −2    2 plus an additional condition. If   0, then   2 forces

  2 +  −  = 2 + , thus

1

32

2+Z
0

exp

∙
−4
3
( −√ cos() + )

¸


=
2 + 

32
exp

∙
−4
3
( −√ cos() + )

¸
;

if   0, then   0 forces    −  = , thus

1

32

2Z


exp

∙
−4
3
( −√ cos() + )

¸


=
2 − 

32
exp

∙
−4
3
( −√ cos() + )

¸


In either case, the coefficient numerator is 2 − || and the density is symmetric in
 about 0. Let  = ||, then we multiply by 2 to obtain the density of (  ) :

2(2 − )

32
exp

∙
−4
3
( −√ cos() + )

¸
where 0    2. Adding contributions at  and 2 −  yields

4

3
exp

∙
−4
3
( −

√
 cos() + )

¸
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for 0    , which works since 2(2 − ) + 2 = 4 and cos() = cos(2 − ).

Replacing ,  by 
24, 24 yields

4

3
exp

∙
−4
3

µ
2

4
−  

4
cos() +

2

4

¶¸


2



2

=
1

3
  exp

∙
−1
3

¡
2 −   cos() + 2

¢¸


This is already useful for computing moments of area:

E

µµ
1

2
  sin()

¶¶
= !

Ã√
3

2

!

for all positive integers . Also, an initial step in calculating E( ) is to evaluate

1

3

Z
0

22 exp

∙
−1
3

¡
2 −   cos() + 2

¢¸
 =

22

3
exp

∙
−1
3

¡
2 + 2

¢¸
0

µ
 

3

¶
where 0() is the modified Bessel function of the first kind [21]. Note that the angle

 is adjacent to sides ,  and opposite to side , as is traditional. The analogous

density for (  ) appears in the next section.

We now bring  into the trivariate density, removing . Differentiating the Law

of Cosines

2 = 2 − 2   cos() + 2

with respect to , it is clear that

2   = 2   sin() 

=
p
(+ + )(−+ + )(− + )(+ − ) 

by a formula for area, and hence the density becomes

1

3
  exp

∙
−1
3

¡
2 −   cos() + 2

¢¸
  

=
1

3
  exp

∙
−1
6

¡
2 + 2 + (2 − 2   cos() + 2)

¢¸
  

=
2

3

  p
(+ + )(−+ + )(− + )(+ − )

exp

∙
−1
6

¡
2 + 2 + 2

¢¸
  

assuming 0    , that is, 2 − 2   + 2  2  2 + 2   + 2. The required

condition |− |    +  does not change upon permutation of sides , , .
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Note that the variables ,  are each exponentially distributed with mean 1,

with cross-correlation 14. A closed-form expression for the density of ( ) is not

possible [20], but an infinite series representation [22]

∞X
=0

1

4
Φ(− 1 )Φ(− 1 ) exp(−( + ))

is valid, where Φ(  ) is the confluent hypergeometric function of the first kind

[23]. In this special case,

Φ(− 1 ) =
X

=0

µ




¶
(−1)
!



Proving the series representation makes use of

 =

µ
√
2

¶2
+

µ
√
2

¶2
  =

µ
√
2

¶2
+

µ
√
2

¶2
and the fact that 

√
2, 

√
2 are jointly normal with mean 0, variance 12 and

cross-correlation 12. Other multivariate generalizations of the exponential distribu-

tion are found in [24].

For the (  )-density of random Gaussian triangles in 3-space, we refer to [4].

0.6. Bivariate Details. Let ∆ = (+ + )(−+ + )(− + )(+ − ) for

convenience. The transformation (  ) 7→ (  ) is prescribed via

cos() =
−2 + 2 + 2

2  
 cos() =

−2 + 2 + 2

2  


We have, for example,

− sin()


= − 

 
 − sin()


=

2 + 2 − 2

2 2
 − sin()


=

2 − 2 + 2

2  2

hence



=



 

1

sin()
=



 

1p
1− cos()2 =



 

2 √
∆
=
2√
∆





= −

2 + 2 − 2

22

1

sin()
= −

2 + 2 − 2

22

2  √
∆
= −

2 + 2 − 2


√
∆






= −

2 − 2 + 2

2 2
1

sin()
= −

2 − 2 + 2

2 2
2  √
∆
= −

2 − 2 + 2


√
∆
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The corresponding Jacobian matrix is

 =

⎛⎜⎜⎜⎜⎝
2√
∆

−2 − 2 + 2


√
∆

−2 + 2 − 2


√
∆

−2 − 2 + 2


√
∆

2√
∆

2 − 2 − 2


√
∆

0 0 1

⎞⎟⎟⎟⎟⎠
and || = 1( ). By the Law of Sines,

 = 
sin()

sin()
= 

sin()

sin(+ )
  = 

sin()

sin()
= 

sin()

sin(+ )

and, under the change of variables,

√
∆ = 22

sin() sin()

sin(+ )


The density of (  ) in two dimensions is

2

3

22√
∆
exp

∙
−1
6

¡
2 + 2 + 2

¢¸
=

25

3

sin()2 sin()2

sin(+ )4
√
∆
exp

∙
− 2

6 sin(+ )2

¡
sin()2 + sin()2 + sin(+ )2

¢¸
=

3

3

sin() sin()

sin(+ )3
exp

∙
−

2

6

sin()2 + sin()2 + sin(+ )2

sin(+ )2

¸


Integrating out  is facilitated by observing that

∞Z
0

3 exp

µ
−

2

6


¶
 =

18

2

for   0, therefore the density of ( ) in two dimensions is

18

3

sin() sin()

sin(+ )3

µ
sin(+ )2

sin()2 + sin()2 + sin(+ )2

¶2
=

6



sin() sin() sin(+ )

(sin()2 + sin()2 + sin(+ )2)2


Similarly, the density of (  ) in three dimensions is
√
3

9
22 exp

µ
−1
6

¡
2 + 2 + 2

¢¶
=

√
35

9

sin()2 sin()2

sin(+ )4
exp

∙
−

2

6

sin()2 + sin()2 + sin(+ )2

sin(+ )2

¸




Random Triangles 13

Here we observe that ∞Z
0

5 exp

µ
−

2

6


¶
 =

216

3

for   0, therefore the density of ( ) in three dimensions is

216
√
3

9

sin()2 sin()2

sin(+ )4

µ
sin(+ )2

sin()2 + sin()2 + sin(+ )2

¶3
=

24
√
3



sin()2 sin()2 sin(+ )2

(sin()2 + sin()2 + sin(+ )2)3


We turn attention to the most interesting of our moment evaluations, that con-

cerning E(2). First,
Z
0

arcsin

µ
cos()

2

¶
 = 0

because arcsin(cos( − )2) = arcsin(− cos()2) = − arcsin(cos()2). Conse-

quently

Z
0

 sin()p
4− cos()2 = − arcsin

µ
cos()

2

¶¯̄̄̄
0

+

Z
0

arcsin

µ
cos()

2

¶


=
2

6

using integration by parts. Second,

Z
0

µ
arcsin

µ
cos()

2

¶¶2
 =

1

4

∞X
=0

∞X
=0

1

16+

µ
2



¶µ
2



¶
1

2+ 1

1

2+ 1

Z
0

cos()2+2+2

=


16

∞X
=0

∞X
=0

1

64+

µ
2



¶µ
2



¶µ
2+ 2+ 2

+ + 1

¶
1

2+ 1

1

2+ 1

=


2
Li2

µ
1

4

¶
which is a curious generalization of sums found in [25]. Consequently

Z
0

 sin()p
4− cos()2 arcsin

µ
cos()

2

¶
 = −

2

µ
arcsin

µ
cos()

2

¶¶2 ¯̄̄̄¯


0

+
1

2

Z
0

µ
arcsin

µ
cos()

2

¶¶2


= −
3

72
+



4
Li2

µ
1

4

¶
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using integration by parts again. Third, () = 1 and (0) = 0, where 0() = ().

Finally,

Z
0

20() = 2()
¯̄
0
− 2

Z
0

() 

= 2 − 2


Z
0


sin()p
4− cos()2

µ


2
+ arcsin

µ
cos()

2

¶¶
− 2



Z
0

2

= 2 − 2

6
− 2

µ
−

2

72
+
1

4
Li2

µ
1

4

¶¶
− 2
3
2

=
7

36
2 − 1

2
Li2

µ
1

4

¶
as was to be shown.

A random Gaussian triangle captures a location ( ) with probability

3

(2)52
[() + ()] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0250000 if  = 0

0197171 if  = 12

0098289 if  = 1

0032455 if  = 32

0007626 if  = 2

where  =
p
2 + 2 and

 =

∞Z
0

∞Z
0

0Z
−∞

exp
³
− (1+)2+(1+)2+(1+)2

2

´ ∙
 + 2arctan

µ
11

1
√

21+
2
1+

2
1

¶¸
111

 =

0Z
−∞

0Z
−∞

∞Z
0

exp
³
− (1+)2+(1+)2+(1+)2

2

´ ∙
 − 2 arctan

µ
11

1
√

21+
2
1+

2
1

¶¸
111

The specific result 14 for capturing (0 0) is well-known [26]; the general result is less

so [27]. See also [28, 29, 30].

We conclude with an unsolved problem: what is an exact expression for

E( ) =
1

3

Z ∞

0

Z ∞

0

Z 

0

2   exp

∙
−1
3

¡
2 −   cos() + 2

¢¸
   = 16377

(in two dimensions)? An answer for E() is believed to be even more difficult.
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