[go: up one dir, main page]

login
A102299
Number of prime divisors with multiplicity of n where n and n+1 are composite or twin composite numbers.
0
3, 2, 2, 2, 3, 2, 4, 2, 2, 3, 5, 2, 2, 2, 2, 2, 3, 3, 5, 2, 3, 2, 4, 2, 4, 2, 2, 3, 6, 2, 3, 2, 2, 3, 3, 2, 5, 4, 4, 2, 2, 2, 4, 2, 3, 2, 2, 2, 3, 3, 4, 3, 3, 2, 3, 2, 3, 3, 2, 2, 5, 2, 2, 2, 3, 3, 7, 2, 4, 2, 2, 4, 4, 2, 2, 2, 6, 2, 2, 3, 4, 3, 3, 2, 2, 2, 6, 2, 3, 3, 5, 2, 3, 3, 3, 3, 5, 2, 3, 2, 4, 2, 3, 2, 3
OFFSET
1,1
EXAMPLE
For n=8 n+1=9 a twin composite pair. 8=2*2*2 or product of 3 prime divisors with multiplicity.
MATHEMATICA
Total[Transpose[FactorInteger[#]][[2]]]&/@Transpose[Select[Partition[Complement[Range[250], Prime[Range[PrimePi[250]]]], 2, 1], #[[2]]-#[[1]]==1&]][[1]] (* Harvey P. Dale, Nov 25 2010 *)
PROG
(PARI) f1(n) = for(x=1, n, y=composite(x); if(!isprime(y+1), print1(bigomega(y)", "))) composite(n) =\The n-th composite number. 1 is def as not prime nor composite. { local(c, x); c=1; x=1; while(c <= n, x++; if(!isprime(x), c++); ); return(x) }
CROSSREFS
Sequence in context: A207384 A085034 A119323 * A302481 A306542 A335171
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Feb 19 2005
STATUS
approved