[go: up one dir, main page]

login
A101998
Primes of the form 32*k-1 such that 4*k-1, 8*k-1, 16*k-1 and 64*k-1 are also primes.
7
1439, 429119, 507359, 1014719, 1017119, 2034239, 2368799, 2727359, 4858559, 6484319, 8553599, 8981279, 12789599, 12972959, 14567999, 14929919, 15301439, 15367679, 16362719, 17107199, 17263199, 17962559, 18224639, 18857759
OFFSET
1,1
LINKS
FORMULA
a(n) = 32*A101994(n) - 1 = 8*A101995(n) + 7 = 4*A101996(n) + 3 = 2*A101997(n) + 1. - Amiram Eldar, May 13 2024
EXAMPLE
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 1439 is a term.
MATHEMATICA
32 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 6]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
PROG
(PARI) is(k) = if(k % 32 == 31, my(m = k\32 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024
CROSSREFS
Subsequence of A127578 and A101798.
Sequence in context: A351677 A101798 A081426 * A174277 A063846 A252186
KEYWORD
easy,nonn
AUTHOR
Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004
STATUS
approved