OFFSET
0,2
FORMULA
a(4^k) = prime(k+1).
EXAMPLE
a(13) = a(1 + 3*4) = 2^1 * 3^3 = 54.
a(29) = a(1 + 3*4 + 1*4^2) = 2^1 * 3^3 * 5^1 = 270.
MAPLE
a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(convert(n, base, 4)):
seq(a(n), n=0..60); # Alois P. Heinz, Aug 31 2024
MATHEMATICA
f[n_Integer, base_Integer] /; base >= 2 := Product[ Prime[i]^IntegerDigits[n, base][[Length[IntegerDigits[n, base]] + 1 - i]], {i, Length[IntegerDigits[n, base]]}] Table[f[i, 4], {i, 0, 45}]
PROG
(PARI)
f(n, b) = { my(d = digits(n, b), L = #d); prod(i=1, L, prime(i)^d[L+1-i]) }
apply(n -> f(n, 4), [0..45]) \\ Satish Bysany, Mar 07 2017
CROSSREFS
KEYWORD
base,nonn,easy
AUTHOR
Orges Leka (oleka(AT)students.uni-mainz.de), Dec 21 2004
STATUS
approved