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What is the sequence?
The sequence {by, },>0 is defined by the recurrence relation
bo = b] = l, bn+lbn—l = b?, +bn for n 2 1

and begins 1, 1, 2, 6, 21, 77, 286, 1066, . ... Mo (8FT

Why is it interesting?

e It gives the numbers appearing in the “number fence” table

Nown—=—
Nown=—-
SQNH'-‘
Non -

where the top two rows are filled with ones and each number is the determinant of the matrix formed
by the four numbers touching it. In other words, the matrix satisfies the recurrence
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It turns out that if we apply this recurrence relation to a table whose top two rows are filled with
formal indeterminates
Zg 2.3 Tp T 29

Y-2 ¥Y-1 Yo "N ¥

then the entries in this table are (apparently) Laurent polynomials in the z; and y; in which every
monomial has coefficient +1. Thus b, counts the number of monomials in this polynomial.

e It satisfies the relation
bn bn+l bn-H!
det | bpyr bpsz buyz | =1foralln > 0. (1)
bn+2 bn+3 bn+4

This property is actually equivalent t6 the recurrence relation above; see David Speyer’s writeup on
the 3 x 3 determinant recurrence.



e We can write b, = ¢,¢n41, where {¢,} is a new sequence defined by A 5/ l ;
=el=0=1, CxCris=Crt1Cnsa+1forn>0, '2

which begins 1, 1, 1, 2, 3, 7, 11,26, .... This sequence counts several things: for example, ¢, is the
number of domino tilings of a 3 x (2ny rectangle. Again, see Speyer’s writeup for more details.

e The sequence {b,} also satisfies a linear recurrence
bp = Sbp—1 — S5bp—2 + bu—3
and hence has a rational generating function

1- 3z + 22 2 1-3z + 22

B(Z)= _l+5z_5z2+z3 A (z-l)(l—4::+:c7)'

What is the combinatorial interpretation?

Construct an infinite ladder graph G shown below; then b,, gives the number of paths in this graph from P,
to P, moving only up and to the right (or moving to the left, in the drawing on the right).
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Why does it work?

I'll complete this section later, but for now, just an sketch of the proof: We prove the 3 x 3 determinant rela-
tion (1) by applying the Gessel-Viennot Theorem (ref?) to the graph above with left endpoints (P, Py, P2)
and right endpoints (P44, Put3, Pni2).- The key point is that there exists exactly one way of joining P to
Puya, Py to Poyg and P to P42 by three vertex-disjoint paths in G. This determinant relation together
with the initial cases by = by = 1, by = 2, by = 6 (which can be checked by hand) uniquely determine the
sequence by,.

What does it mean?

e The one-dimensional nature of the paths counted by b, makes it clear that the sequence, originally
defined by a quadratic recurrence, will in fact satisfy a linear recurrence. Looking at the drawing of G
on the left, if we define a 5-tuple p,, as the number of paths from F, to each of the five vertices on the
row containing P, , then there exists a fixed matrix M such that p,;; = Mp,; the Cayley-Hamilton
theorem then tells us that the p,, satisfy a linear recurrence.

e As mentioned above, b, counts the monomials appearing in the Laurent polynomials given by the
“number fence” recurrence E = B2EC. 4 combinatorial understanding of the sequence {b,} is thus a
natural first step in understanding the combinatorics of this recurrence relation.



