OFFSET
1,1
COMMENTS
Let S(n)=sum_{i=0,..n-1} (i!)^2. Note that 6 divides S(n) for n>1. For prime p=20879, p divides S(p-1). Hence p divides S(n) for all n >= p-1 and all prime values of S(n)/6 are for n < p-1.
The next term (a(7)) has 96 digits. The largest term (a(9)) has 288 digits. - Harvey P. Dale, Aug 31 2021
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..9
MATHEMATICA
f2=1; s=2; Do[f2=f2*n*n; s=s+f2; If[PrimeQ[s/6], Print[{n, s/6}]], {n, 2, 100}]
Select[Accumulate[(Range[0, 25]!)^2]/6, PrimeQ] (* Harvey P. Dale, Aug 31 2021 *)
CROSSREFS
KEYWORD
fini,nonn
AUTHOR
T. D. Noe, Dec 18 2004
STATUS
approved