[go: up one dir, main page]

login
A101208
Smallest odd prime p such that n = (p - 1) / ord_p(2).
9
3, 7, 43, 113, 251, 31, 1163, 73, 397, 151, 331, 1753, 4421, 631, 3061, 257, 1429, 127, 6043, 3121, 29611, 1321, 18539, 601, 15451, 14327, 2971, 2857, 72269, 3391, 683, 2593, 17029, 2687, 42701, 11161, 13099, 1103, 71293, 13121, 17467, 2143, 83077, 25609, 5581
OFFSET
1,1
COMMENTS
First time n appears is given in A001917.
Smallest p (let it be the k-th prime) such that A001917(k) = n, or the smallest prime which has ratio n in base 2.
First cyclic number (in base 2) of n-th degree (or n-th order): the reciprocals of these numbers belong to one of n different cycles. Each cycle has (a(n) - 1)/n digits.
Conjecture: a(n) is defined for all n.
Recursive by indices: (See A054471)
1, 3, 43, 83077, ...
2, 7, 1163, ...
4, 113, 257189, ...
5, 251, 6846277, ...
6, 31, 683, ...
8, 73, 472019, ...
9, 397, 13619483, ...
10, 151, 349717, ...
...
The records for the ratio in base 2 are: 1, 2, 6, 8, 18, 24, 31, 38, 72, 105, 129, 630, 1285, 1542, 2048, ..., the primes are: 3, 7, 31, 73, 127, 601, 683, 1103, 1801, 2731, 5419, 8191, 43691, 61681, 65537, ...
(Updated by Eric Chen, Jun 01 2015)
MATHEMATICA
f[n_Integer] := Block[{k = 1, p}, While[p = k*n + 1; ! PrimeQ[p] || p != 1 + n*MultiplicativeOrder[2, p] || p = 2, k++]; p]; Array[f, 128] (* Eric Chen, Jun 01 2015 *)
PROG
(PARI) a(n) = {p=3; ok = 0; until(ok, if (n == (p-1)/znorder(Mod(2, p)), ok = 1, p = nextprime(p+1)); ); return (p); } \\ Michel Marcus, Jun 27 2013
CROSSREFS
Cf. A001122, A115591, A001133, A001134, A001135, A001136, A152307, A152308, A152309, A152310, A152311, which are sequences of primes p where the period of the reciprocal in base 2 is (p-1)/n for n=1 to 11.
Sequence in context: A213893 A236476 A282178 * A050633 A107636 A303160
KEYWORD
nonn,nice,base
AUTHOR
Leigh Ellison (le(AT)maths.gla.ac.uk), Dec 14 2004
STATUS
approved