OFFSET
1,3
COMMENTS
Numbers n such that (770*10^n + 31)/9 is prime.
Numbers n such that digit 8 followed by n >= 0 occurrences of digit 5 followed by digit 9 is prime.
Numbers corresponding to terms <= 636 are certified primes.
a(22) > 10^5. - Robert Price, Oct 26 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A103086(n) - 1.
EXAMPLE
855555559 is prime, hence 7 is a term.
MATHEMATICA
Flatten[Position[NestList[10#-31&, 89, 1000], _?PrimeQ]-1] (* As written, the program will generate the first 14 terms of the sequence; changing the constant from 1000 to 7000 will generate 18 terms of the sequence but it will take a long time to do so *) (* Harvey P. Dale, Jul 16 2012 *)
Select[Range[0, 100000], PrimeQ[(770*10^# + 31)/9] &] (* Robert Price, Oct 26 2015 *)
PROG
(PARI) a=89; for(n=0, 1000, if(isprime(a), print1(n, ", ")); a=10*a-31)
(PARI) for(n=0, 1000, if(isprime((770*10^n+31)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Nov 30 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(19) from Kamada data by Ray Chandler, Apr 29 2015
a(20)-a(21) from Robert Price, Oct 26 2015
STATUS
approved