OFFSET
1,1
COMMENTS
See sequence of base 10 Rhonda numbers for more information and links.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Rhonda Number
EXAMPLE
10206 is a Rhonda number to base 4 because the product of its base 4 digits is 2*1*3*3*1*3*2=108, the sum of the prime factors of 10206 is 2+6*3+7=27 and 27*4=108.
From Reinhard Zumkeller, Mar 05 2015: (Start)
a(18) = 764526 = 2*4^9 + 3*4^8 + 2*4^7 + 2*4^6 + 2*4^5 + 2*4^4 + 1*4^3 + 2*4^2 + 3*4^1 + 2*4^0 = 2*3*7*109*167
with 2*3*2*2*2*2*1*2*3*2 = 4 * (2+3+7+109+167) = 1152;
a(21) = 912766 = 3*4^9 + 1*4^8 + 3*4^7 + 2*4^6 + 3*4^5 + 1*4^4 + 1*4^3 + 3*4^2 + 3*4^1 + 2*4^0 = 2*53*79*109
with 3*1*3*2*3*1*1*3*3*2 = 4 * (2+53+79+109) = 972. (End)
PROG
(Haskell)
a100968 n = a100968_list !! (n-1)
a100968_list = filter (rhonda 4) a023705_list
-- Function rhonda as in A099542.
-- Reinhard Zumkeller, Mar 08 2015
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 24 2004
EXTENSIONS
a(18) and a(21) corrected, terms a(24) - a(32) by Reinhard Zumkeller, Mar 05 2015
STATUS
approved