[go: up one dir, main page]

login
A099427
a(1) = 1; for n > 1, a(n) = 1 + greatest common divisor of n and a(n-1).
3
1, 2, 2, 3, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 6, 7, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4
OFFSET
1,2
COMMENTS
a(A060401(n)) = n + 1; a(A192489(n)) = 2. - Reinhard Zumkeller, Jul 02 2011
For n >= 3, a(n) == n+1 (mod 2). - Robert Israel, Jan 10 2017
LINKS
EXAMPLE
a(9)=4 because 1+gcd(a(8),9)=1+gcd(3,9)=1+3.
MAPLE
f:= proc(n) option remember; 1 + igcd(n, procname(n-1)) end proc:
f(1):= 1:
map(f, [$1..1000]); # Robert Israel, Jan 10 2017
MATHEMATICA
a[1] = 1; a[n_] := a[n] = GCD[n, a[n - 1]] + 1; Table[ a[n], {n, 105}] (* Robert G. Wilson v, Nov 18 2004 *)
nxt[{n_, a_}]:={n+1, GCD[n+1, a]+1}; Transpose[NestList[nxt, {1, 1}, 110]] [[2]] (* Harvey P. Dale, Nov 22 2014 *)
PROG
(Haskell)
a099427 n = a099427_list !! (n-1)
a099427_list = 1 : map (+ 1) (zipWith gcd [2..] a099427_list)
-- Reinhard Zumkeller, Jun 23 2015, Jul 02 2011
CROSSREFS
For position of first occurrence of n see A060401.
Sequence in context: A185816 A324901 A295568 * A059964 A308050 A248147
KEYWORD
easy,nonn,nice
AUTHOR
Gaetan Polard (gaetan27(AT)hotmail.com), Nov 18 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, Nov 18 2004
STATUS
approved