[go: up one dir, main page]

login
A099233
Square array read by antidiagonals associated to sections of 1/(1-x-x^k).
8
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 8, 1, 1, 1, 6, 15, 26, 28, 13, 1, 1, 1, 7, 21, 45, 69, 60, 21, 1, 1, 1, 8, 28, 71, 140, 181, 129, 34, 1, 1, 1, 9, 36, 105, 251, 431, 476, 277, 55, 1, 1, 1, 10, 45, 148, 413, 882, 1326, 1252, 595, 89, 1
OFFSET
0,9
LINKS
FORMULA
Square array T(n, k) = Sum_{j=0..n} binomial(k(n-j), j).
Rows are generated by 1/(1-x(1+x)^k) and satisfy a(n) = Sum_{k=0..n} binomial(n, k)a(n-k-1).
EXAMPLE
Rows begin
1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 5, 8, ...
1, 1, 3, 6, 13, 28, ...
1, 1, 4, 10, 26, 69, ...
1, 1, 5, 15, 45, 140, ...
Row 1 is the 0-section of 1/(1-x-x) (A000079);
Row 2 is the 1-section of 1/(1-x-x^2) (A000045);
Row 3 is the 2-section of 1/(1-x-x^3) (A000930);
Row 4 is the 3-section of 1/(1-x-x^4) (A003269);
etc.
CROSSREFS
Sums of antidiagonals are A099236.
Columns include A000217, A008778.
Rows include A000045, A002478, A099234, A099235.
Main diagonal gives A099237.
Cf. A099238.
Sequence in context: A047120 A096751 A293551 * A303912 A133815 A305027
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Oct 08 2004
STATUS
approved