OFFSET
0,9
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
Square array T(n, k) = Sum_{j=0..n} binomial(k(n-j), j).
Rows are generated by 1/(1-x(1+x)^k) and satisfy a(n) = Sum_{k=0..n} binomial(n, k)a(n-k-1).
EXAMPLE
Rows begin
1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 5, 8, ...
1, 1, 3, 6, 13, 28, ...
1, 1, 4, 10, 26, 69, ...
1, 1, 5, 15, 45, 140, ...
Row 1 is the 0-section of 1/(1-x-x) (A000079);
Row 2 is the 1-section of 1/(1-x-x^2) (A000045);
Row 3 is the 2-section of 1/(1-x-x^3) (A000930);
Row 4 is the 3-section of 1/(1-x-x^4) (A003269);
etc.
KEYWORD
AUTHOR
Paul Barry, Oct 08 2004
STATUS
approved