[go: up one dir, main page]

login
A099207
A variation on Flavius's sieve (A000960): Start with the primes; at the k-th sieving step, remove every (k+1)-st term of the sequence remaining after the (k-1)-st sieving step; iterate.
5
2, 5, 17, 41, 67, 103, 167, 227, 307, 401, 467, 599, 751, 853, 1087, 1279, 1409, 1607, 1879, 2027, 2351, 2671, 2731, 3253, 3433, 3803, 4127, 4517, 4817, 5381, 5813, 6203, 6521, 7247, 7489, 8011, 8761, 8933, 9629, 10273, 10861, 11243, 12301, 12421, 13297
OFFSET
1,1
EXAMPLE
Start with
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 ... and delete every second term, giving
2 5 11 17 23 31 41 47 59 67 73 83 97 103 ... and delete every 3rd term, giving
2 5 17 23 41 47 67 73 97 103 ... and delete every 4th term, giving
.... Continue forever and what's left is the sequence.
MAPLE
S[1]:={seq(ithprime(i), i=1..2500)}: for n from 2 to 2500 do S[n]:=S[n-1] minus {seq(S[n-1][n*i], i=1..nops(S[n-1])/n)} od: A:=S[2500]; # Emeric Deutsch, Nov 15 2004
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 16 2004
EXTENSIONS
More terms from Ray Chandler and Emeric Deutsch, Nov 16 2004
STATUS
approved