[go: up one dir, main page]

login
A099110
Expansion of 1 / ((1+x)*(1-2x)*(1-3x)*(1-4x)).
2
1, 8, 47, 238, 1113, 4956, 21379, 90266, 375485, 1545544, 6313671, 25650534, 103792417, 418745972, 1685723723, 6775136242, 27197312709, 109079641440, 437189912335, 1751374038590, 7013340021161, 28076893083148
OFFSET
0,2
FORMULA
a(n) = (1/60) (80*2^n - 405*3^n + 384*4^n + (-1)^n).
a(n) = 8*a(n-1) - 17*a(n-2) - 2*a(n-3) + 24*a(n-4), n >= 4. - Vincenzo Librandi, Mar 22 2011
MATHEMATICA
CoefficientList[Series[1/((1+x)(1-2x)(1-3x)(1-4x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{8, -17, -2, 24}, {1, 8, 47, 238}, 30] (* Harvey P. Dale, Oct 03 2016 *)
PROG
(PARI) Vec(1/((1+x)*(1-2*x)*(1-3*x)*(1-4*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
First differences are in A004057. Pairwise sums are in A016269.
Sequence in context: A026983 A296331 A081279 * A106393 A300167 A029760
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Sep 28 2004
STATUS
approved