[go: up one dir, main page]

login
A098479
Expansion of 1/sqrt((1-x)^2 - 4*x^3).
10
1, 1, 1, 3, 7, 13, 27, 61, 133, 287, 633, 1407, 3121, 6943, 15517, 34755, 77959, 175213, 394499, 889461, 2007963, 4538485, 10269247, 23258881, 52726599, 119627977, 271624315, 617180533, 1403272799, 3192557561, 7267485523, 16552454205
OFFSET
0,4
COMMENTS
1/sqrt((1-x)^2-4*r*x^3) expands to Sum_{k=0..floor(n/2)} binomial(n-k,k)*binomial(n-2*k,k)*r^k.
Hankel transform is A120580. - Paul Barry, Sep 19 2008
From Joerg Arndt, Jul 01 2011: (Start)
Apparently the number of lattice paths from (0,0) to (n,n) using steps (3,0), (0,3), (1,1).
It appears that 1/sqrt((1-x)^2-4*x^s) is the g.f. for lattice paths from (0,0) to (n,n) using steps (s,0), (0,s), (1,1).
Apparently the number of lattice paths from (0,0) to (n,n) using steps (1,2), (2,1), (1,1). (End)
Diagonal of rational functions 1/(1 - (x*y + x*y^2 + x^2*y)), 1/(1 - (x*y + x^3 + y^3)). - Gheorghe Coserea, Aug 31 2018
LINKS
Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
J. Cigler, Some nice Hankel determinants, arXiv preprint arXiv:1109.1449 [math.CO], 2011.
Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
Steffen Eger, The Combinatorics of Weighted Vector Compositions, arXiv:1704.04964 [math.CO], 2017.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n-2*k, k).
D-finite with recurrence: n*a(n) + (-2*n+1)*a(n-1) + (n-1)*a(n-2) + 2*(-2*n+3)*a(n-3) = 0. - R. J. Mathar, Nov 30 2012
G.f.: 1/(1 - x - 2*x^3/(1 - x - x^3/(1 - x - x^3/(1 - x - x^3/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 19 2021
a(n) ~ 1 / (sqrt((1-r)*(3-r)) * sqrt(Pi*n) * r^n), where r = 0.432040800333095... is the real root of the equation -1 + 2*r - r^2 + 4*r^3 = 0. - Vaclav Kotesovec, Jun 05 2022
EXAMPLE
From Joerg Arndt, Jul 01 2011: (Start)
The triangle of lattice paths from (0,0) to (n,k) using steps (1,2), (2,1), (1,1) begins
1;
0, 1;
0, 1, 1;
0, 0, 2, 3;
0, 0, 1, 3, 7;
0, 0, 0, 3, 7, 13;
0, 0, 0, 1, 6, 17, 27;
0, 0, 0, 0, 4, 14, 36, 61;
The triangle of lattice paths from (0,0) to (n,k) using steps (3,0), (0,3), (1,1) begins
1;
0, 1;
0, 0, 1;
1, 0, 0, 3;
0, 2, 0, 0, 7;
0, 0, 3, 0, 0, 13;
1, 0, 0, 7, 0, 0, 27;
0, 3, 0, 0, 17, 0, 0, 61;
The diagonals of both appear to be this sequence. (End)
MATHEMATICA
a[n_] := Sum[ Binomial[n-k, k]*Binomial[n-2k, k], {k, 0, n/2}]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jan 07 2013, from 1st formula *)
CoefficientList[Series[1/Sqrt[(1-x)^2-4x^3], {x, 0, 40}], x] (* Harvey P. Dale, Aug 13 2024 *)
PROG
(PARI) /* as lattice paths, assuming the first comment is true */
/* same as in A092566 but use either of the following */
steps=[[3, 0], [0, 3], [1, 1]];
steps=[[1, 1], [1, 2], [2, 1]];
/* Joerg Arndt, Jul 01 2011 */
(Python)
from sympy import binomial
def a(n): return sum(binomial(n - k, k) * binomial(n - 2*k, k) for k in range(n//2 + 1))
print([a(n) for n in range(31)]) # Indranil Ghosh, Apr 18 2017
CROSSREFS
Sequence in context: A333653 A301594 A080241 * A119445 A146904 A146432
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 10 2004
STATUS
approved