OFFSET
0,2
COMMENTS
Nguyen and Taggart (see link) conjecture: det[a(i+j) for i,j=0..n] = b(n)*b(n+1)/2 with b(n) = A139685(n). - Peter Luschny, May 19 2015
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
H. D. Nguyen, D. Taggart, Mining the OEIS: Ten Experimental Conjectures, 2013; Mentions this sequence. - From N. J. A. Sloane, Mar 16 2014
FORMULA
G.f.: 1/sqrt(1-16x+48x^2).
E.g.f.: exp(8x)*BesselI(0, 4x).
a(n) = Sum_{k=0..n} 3^k*binomial(2k, k)*binomial(2(n-k), n-k).
D-finite with recurrence: n*a(n) +8*(1-2*n)*a(n-1) +48*(n-1)*a(n-2)=0. - R. J. Mathar, Sep 26 2012
a(n) ~ sqrt(3)*12^n/sqrt(2*Pi*n). - Vaclav Kotesovec, Oct 15 2012
a(n) = 4^n*hypergeometric([-n, 1/2], [1], -2). - Peter Luschny, May 19 2015
MATHEMATICA
Table[SeriesCoefficient[1/(Sqrt[1-4*x]*Sqrt[1-12*x]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(1/sqrt(1-16*x+48*x^2)) \\ Joerg Arndt, May 11 2013
(Sage)
a = lambda n: 4^n*hypergeometric([-n, 1/2], [1], -2)
[simplify(a(n)) for n in range(23)] # Peter Luschny, May 19 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 07 2004
STATUS
approved