[go: up one dir, main page]

login
A098206
A first order iteration: n-th term is obtained from (n-1)-th by adding n-th prime and then multiplying by the n-th prime; initial value is 1.
3
1, 12, 85, 644, 7205, 93834, 1595467, 30314234, 697227911, 20219610260, 626807919021, 23191893005146, 950867613212667, 40887307368146530, 1921703446302889119, 101850282654053126116, 6009166676589134444325
OFFSET
1,2
LINKS
FORMULA
a(n) = (a(n-1)+prime(n))*prime(n), a(1)=1.
a(n) = product(j=2..n, prime(j)) + sum(k=2..n, prime(k)*product(j=k..n, prime(j))). - Robert Israel, Feb 12 2015
EXAMPLE
n=4: a(4)=(a(3)+7)*7=(85+7)*7=644.
MAPLE
a:= n -> mul(ithprime(j), j=2..n) + add(ithprime(k)*mul(ithprime(j), j=k..n), k=2..n):
seq(a(n), n=1..30); # Robert Israel, Feb 12 2015
MATHEMATICA
f[x_]:=(f[x-1]+Prime[x])*Prime[x]; f[1]=0; Table[f[w], {w, 1, 25}]
nxt[{n_, a_}]:=Module[{p=Prime[n+1]}, {n+1, p(a+p)}]; NestList[nxt, {1, 1}, 20][[All, 2]] (* Harvey P. Dale, Jun 18 2021 *)
CROSSREFS
Sequence in context: A095267 A118017 A225785 * A104911 A283119 A091119
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 19 2004
STATUS
approved