[go: up one dir, main page]

login
A097807
Riordan array (1/(1+x),1) read by rows.
14
1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1
OFFSET
0,1
COMMENTS
Columns have g.f. x^k/(1+x).
Row sums are A059841. Diagonal sums are (-1)^n*A008619 with g.f. 1/((1+x)(1-x^2)).
Inverse of A097806. Equals B^(-1)*A097805, where B is the binomial matrix.
FORMULA
Triangle array of numbers T(n, k) with T(n, k)=if(n>=k, (-1)^(n-k), 0).
T(n+1,0) = -T(n,0), T(n+1,k+1) = T(n,k) for k = 1..n. - Reinhard Zumkeller, Sep 17 2014
EXAMPLE
Rows begin
1;
-1,1;
1,-1,1;
-1,1,-1,1;
1,-1,1,-1,1;
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
rows = 12;
R = RiordanArray[1/(1 + #)&, #&, rows];
R // Flatten (* Jean-François Alcover, Jul 20 2019 *)
PROG
(Haskell)
a097807 n k = a097807_tabl !! n !! k
a097807_row n = a097807_tabl !! n
a097807_tabl = iterate(\xs@(x:_) -> - x : xs) [1]
-- Reinhard Zumkeller, Sep 17 2014
CROSSREFS
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Aug 25 2004
STATUS
approved