[go: up one dir, main page]

login
A097397
Coefficients in asymptotic expansion of normal probability function.
7
1, 1, 1, 5, 9, 129, 57, 9141, -36879, 1430049, -15439407, 418019205, -7404957255, 196896257505, -4656470025015, 134136890777205, -3845524501226655, 123250625100419265, -4085349586734306015, 145973136800663973765
OFFSET
0,4
COMMENTS
a(0) + a(1)*x/(1-2*x) + a(2)*x^2/((1-2*x)*(1-4*x)) + ... = 1 + x + 3*x^2 + 15*x^3 + ...
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 932.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
E.g.f.: 1/sqrt(1 - log(1 + 2*x)). - Seiichi Manyama, Mar 05 2022
a(n) ~ n! * (-1)^(n+1) * 2^(n-1) / (log(n)^(3/2) * n) * (1 - 3*(gamma + 1)/(2*log(n)) + 15*(1 + 2*gamma + gamma^2 - Pi^2/6) / (8*log(n)^2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 05 2022
From Seiichi Manyama, Nov 18 2023: (Start)
a(n) = Sum_{k=0..n} 2^(n-k) * (Product_{j=0..k-1} (2*j+1)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-2)^k * (1/2 * k/n - 1) * (k-1)! * binomial(n,k) * a(n-k). (End)
MATHEMATICA
Table[Sum[2^(n - 2*k)*(2*k)!/k! * SeriesCoefficient[(1 - n + x)*Pochhammer[2 - n + x, -1 + n], {x, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 10 2019 *)
PROG
(PARI) a(n)=sum(k=0, n, 2^(n-2*k)*(2*k)!/k!* polcoeff(prod(i=0, n-1, x-i), k))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1-log(1+2*x)))) \\ Seiichi Manyama, Mar 05 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 13 2004
STATUS
approved