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The similarity between the sequences A097344 and A097345 of the Online Encyclopedia of Integer
Sequences is elucidated.

I. DEFINITIONS

A097344 is defined as the numerators of the binomial transform of 1/(n + 1)2. The sequence of fractions of this
binomial transform is by definition

fn ≡
n∑

k=0

(
n

k

)
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, . . . ; n = 0, 1, 2, 3, . . . (1)

rewritten in terms of a terminating Hypergeometric Function [1, 2]

fn = 3F2

(
1, 1,−n

2, 2 | −1
)

. (2)

[The k-sum may be split into even and odd terms,

fn =
n∑

k=0

(
n

k

)
(−1)k

(k + 1)2
+ 2

b(n−1)/2c∑
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(
n
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)
1

(2k + 2)2
(3)

and the first, alternating of the two sums written as Bell polynomials with Corollary 2.2 of [3].]
A097345 is defined as the numerators of the partial sums of the binomial transform of 1/(n + 1). The sequence of

fractions of this binomial transform is by definition

tn ≡
n∑

k=0
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k

)
1

k + 1
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, . . . ; n = 0, 1, 2, 3, . . . (4)

simplified by [4, 0.155.2] to

tn =
2n+1 − 1

n + 1
. (5)

tn generates the partial sums

gn ≡
n∑

j=0

tj = 1,
5
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,
887
60

,
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, . . . ;n = 0, 1, 2, 3, . . . (6)

II. CONJECTURE AND NEAR-MISSES

The numerators in (6) appear to coincide with the sequence of numerators of the fn sequence in (1). Indeed the
transition is given by moving (4) into (6)

gn =
n∑

j=0

j∑
k=0

(
j

k

)
1

k + 1
(7)

where we use a re-summation on the triangular grid of the (k, j) coordinates,
∑n

j=0

∑j
k=0 =

∑n
k=0

∑n
j=k,
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a resummation l ≡ j − k, and then [4, 0.151.1]

gn =
n∑

k=0

n∑
j=k

(
j

k

)
1

k + 1
=

n∑
k=0

1
k + 1

n∑
j=k

(
j

k

)
=

n∑
k=0

1
k + 1

n−k∑
l=0

(
k + l

k

)
=

n∑
k=0

1
k + 1

(
n + 1
k + 1

)

=
n∑

k=0

1
k + 1

(n + 1)!
(n− k)!(k + 1)!

=
n∑

k=0

1
k + 1

· n + 1
k + 1

· n!
(n− k)!k!

= (n + 1)
n∑

k=0

1
(k + 1)2

· n!
(n− k)!k!

= (n + 1)
n∑

k=0

1
(k + 1)2

(
n

k

)
= (n + 1)fn. (8)

To demonstrate that the numerators of gn and fn are the same, we have to show that the extra factor n + 1 in
(8) is absorbed by the denominator of fn, ie, that n + 1 is a divisor of this denominator. This may actually fail, as
embodied by the list of n in A134652 [1].

APPENDIX A: GENERATING FUNCTIONS

The ordinary generating function (o.g.f.) is defined as

F (x) ≡
∞∑

n=0

fnxn, (A1)

denoted by capitalized letters of the associated series of Taylor coefficients.

F (x) =
∞∑

n=0

n∑
k=0

(
n

k

)
xn 1

(k + 1)2
=

∞∑
k=0

∞∑
n=k

(
n

k

)
xn 1

(k + 1)2
=

∞∑
k=0

xk

(1− x)k+1
· 1
(k + 1)2

=
1
x

∞∑
k=0

xk+1

(1− x)k+1
· 1
(k + 1)2

=
1
x

∞∑
k=1

xk

(1− x)k
· 1
k2

=
1
x
Li2

(
x

1− x

)
. (A2)

From (5) we have with [4, 1.513.4]

T (x) ≡
∞∑

n=0

tnxn =
1
x

∞∑
n=0

2n+1 − 1
n + 1

xn+1 =
1
x

[ ∞∑
n=1

(2x)n

n
−

∞∑
n=1

xn

n

]
=

1
x

ln
1− x

1− 2x
. (A3)

Since gn is a polynomial of n multiplied by fn, the o.g.f. G(x) can be obtained by differentiation of F (x)—as also
used in the Maple function GenFpolyMul in mathar20071126.pdf and in [5]:

xF (x) =
∞∑

n=0

fnxn+1; (A4)

⇒ d

dx
(xF ) =

∞∑
n=0

fn(n + 1)xn =
∞∑

n=0

gnxn = G(x). (A5)

With [6, 2-1]

G(x) =
d

dx
Li2

(
x

1− x

)
=

1
x

1−x

Li1

(
x
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)
d

dx

x
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=

1
x(1− x)
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(
x
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)
. (A6)
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APPENDIX B: EXTENSIONS

The first differences of fn are of similar form as the series itself [1]:

fn+1 − fn =
n+1∑
k=0

(
n + 1

k

)
1

(k + 1)2
−

n∑
k=0

(
n

k

)
1

(k + 1)2
=

n+1∑
k=1

(
n + 1

k

)
1

(k + 1)2
−

n∑
k=1

(
n

k

)
1

(k + 1)2

=
1

(n + 2)2
+

n∑
k=1

(
n + 1

k

)
1

(k + 1)2
−

n∑
k=1

(
n

k

)
1

(k + 1)2
=

n∑
k=0

(
n

k

)
1

(k + 2)2
. (B1)

So fn could be thought of as row s = 1 of an array fn,s of sequences [1, 2],

fn,s ≡
n∑

k=0

(
n

k

)
1

(k + s)2
=

1
s2 3F2

(
s, s,−n

1 + s, 1 + s
| −1

)
; n ≥ 0; s 6= 0; (B2)

fn ≡ fn,1; (B3)

with consecutive rows s related to first differences of previous rows s− 1:

fn+1,s − fn,s =
n+1∑
k=0

(
n + 1

k

)
1

(k + s)2
−

n∑
k=0

(
n

k

)
1

(k + s)2
=

n+1∑
k=1

(
n + 1

k

)
1

(k + s)2
−

n∑
k=1

(
n

k

)
1

(k + s)2

=
1

(n + s + 1)2
+

n∑
k=1

(
n + 1

k

)
1

(k + s)2
−

n∑
k=1

(
n

k

)
1

(k + s)2

=
1

(n + s + 1)2
+

n∑
k=1

[(
n

k

)
+

(
n

k − 1

)]
1

(k + s)2
−

n∑
k=1

(
n

k

)
1

(k + s)2

=
1

(n + s + 1)2
+

n∑
k=1

(
n

k − 1

)
1

(k + s)2
=

1
(n + s + 1)2

+
n−1∑
k=0

(
n

k

)
1

(k + s + 1)2
=

n∑
k=0

(
n

k

)
1

(k + s + 1)2

=
1

(1 + s)2 3F2

(
1 + s, 1 + s,−n

2 + s, 2 + s
| −1

)
= fn,s+1. (B4)
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