OEIS A097344/5

Richard J. Mathar*

Leiden Observatory, P.O. Box 9513, 2300 RA Leiden, The Netherlands

(Dated: January 27, 2008)

The similarity between the sequences A097344 and A097345 of the Online Encyclopedia of Integer Sequences is elucidated.

I. DEFINITIONS

A097344 is defined as the numerators of the binomial transform of $1/(n+1)^2$. The sequence of fractions of this binomial transform is by definition

$$f_n \equiv \sum_{k=0}^n \binom{n}{k} \frac{1}{(k+1)^2} = 1, \frac{5}{4}, \frac{29}{18}, \frac{103}{48}, \frac{887}{300}, \frac{1517}{360}, \dots; \quad n = 0, 1, 2, 3, \dots$$
(1)

rewritten in terms of a terminating Hypergeometric Function [1, 2]

$$f_n = {}_{3}F_2 \left(\begin{array}{c} 1, 1, -n \\ 2, 2 \end{array} \middle| -1 \right).$$
⁽²⁾

[The k-sum may be split into even and odd terms,

$$f_n = \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{(k+1)^2} + 2 \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \binom{n}{2k+1} \frac{1}{(2k+2)^2}$$
(3)

and the first, alternating of the two sums written as Bell polynomials with Corollary 2.2 of [3].]

A097345 is defined as the numerators of the partial sums of the binomial transform of 1/(n+1). The sequence of fractions of this binomial transform is by definition

$$t_n \equiv \sum_{k=0}^n \binom{n}{k} \frac{1}{k+1} = 1, \frac{3}{2}, \frac{7}{3}, \frac{15}{4}, \frac{31}{5}, \frac{21}{2}, \dots; \quad n = 0, 1, 2, 3, \dots$$
(4)

simplified by [4, 0.155.2] to

$$t_n = \frac{2^{n+1} - 1}{n+1}.$$
(5)

 t_n generates the partial sums

$$g_n \equiv \sum_{j=0}^n t_j = 1, \frac{5}{2}, \frac{29}{6}, \frac{103}{12}, \frac{887}{60}, \frac{1517}{60}, \dots ; n = 0, 1, 2, 3, \dots$$
(6)

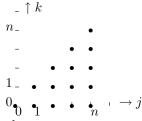
II. CONJECTURE AND NEAR-MISSES

The numerators in (6) appear to coincide with the sequence of numerators of the f_n sequence in (1). Indeed the transition is given by moving (4) into (6)

$$g_n = \sum_{j=0}^n \sum_{k=0}^j \binom{j}{k} \frac{1}{k+1}$$
(7)

where we use a re-summation on the triangular grid of the (k, j) coordinates, $\sum_{j=0}^{n} \sum_{k=0}^{j} \sum_{k=0}^{n} \sum_{j=k}^{n} \sum_{j=k}^$

^{*}URL: http://www.strw.leidenuniv.nl/~mathar/progs/a097345.pdf



a resummation $l \equiv j - k$, and then [4, 0.151.1]

$$g_{n} = \sum_{k=0}^{n} \sum_{j=k}^{n} {\binom{j}{k}} \frac{1}{k+1} = \sum_{k=0}^{n} \frac{1}{k+1} \sum_{j=k}^{n} {\binom{j}{k}} = \sum_{k=0}^{n} \frac{1}{k+1} \sum_{l=0}^{n-k} {\binom{k+l}{k}} = \sum_{k=0}^{n} \frac{1}{k+1} {\binom{n+1}{k+1}} \\ = \sum_{k=0}^{n} \frac{1}{k+1} \frac{(n+1)!}{(n-k)!(k+1)!} = \sum_{k=0}^{n} \frac{1}{k+1} \cdot \frac{n+1}{k+1} \cdot \frac{n!}{(n-k)!k!} = (n+1) \sum_{k=0}^{n} \frac{1}{(k+1)^{2}} \cdot \frac{n!}{(n-k)!k!} \\ = (n+1) \sum_{k=0}^{n} \frac{1}{(k+1)^{2}} {\binom{n}{k}} = (n+1)f_{n}.$$

$$(8)$$

To demonstrate that the numerators of g_n and f_n are the same, we have to show that the extra factor n + 1 in (8) is absorbed by the denominator of f_n , ie, that n + 1 is a divisor of this denominator. This may actually fail, as embodied by the list of n in A134652 [1].

APPENDIX A: GENERATING FUNCTIONS

The ordinary generating function (o.g.f.) is defined as

$$F(x) \equiv \sum_{n=0}^{\infty} f_n x^n, \tag{A1}$$

denoted by capitalized letters of the associated series of Taylor coefficients.

$$F(x) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} x^{n} \frac{1}{(k+1)^{2}} = \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \binom{n}{k} x^{n} \frac{1}{(k+1)^{2}} = \sum_{k=0}^{\infty} \frac{x^{k}}{(1-x)^{k+1}} \cdot \frac{1}{(k+1)^{2}} = \frac{1}{x} \sum_{k=1}^{\infty} \frac{x^{k}}{(1-x)^{k}} \cdot \frac{1}{k^{2}} = \frac{1}{x} Li_{2} \left(\frac{x}{1-x}\right).$$
(A2)

From (5) we have with [4, 1.513.4]

$$T(x) \equiv \sum_{n=0}^{\infty} t_n x^n = \frac{1}{x} \sum_{n=0}^{\infty} \frac{2^{n+1} - 1}{n+1} x^{n+1} = \frac{1}{x} \left[\sum_{n=1}^{\infty} \frac{(2x)^n}{n} - \sum_{n=1}^{\infty} \frac{x^n}{n} \right] = \frac{1}{x} \ln \frac{1 - x}{1 - 2x}.$$
 (A3)

Since g_n is a polynomial of *n* multiplied by f_n , the o.g.f. G(x) can be obtained by differentiation of F(x)—as also used in the Maple function GenFpolyMul in mathar20071126.pdf and in [5]:

$$xF(x) = \sum_{n=0}^{\infty} f_n x^{n+1};$$
 (A4)

$$\Rightarrow \frac{d}{dx}(xF) = \sum_{n=0}^{\infty} f_n(n+1)x^n = \sum_{n=0}^{\infty} g_n x^n = G(x).$$
(A5)

With [6, 2-1]

$$G(x) = \frac{d}{dx} Li_2\left(\frac{x}{1-x}\right) = \frac{1}{\frac{x}{1-x}} Li_1\left(\frac{x}{1-x}\right) \frac{d}{dx} \frac{x}{1-x} = \frac{1}{x(1-x)} Li_1\left(\frac{x}{1-x}\right).$$
 (A6)

APPENDIX B: EXTENSIONS

The first differences of f_n are of similar form as the series itself [1]:

$$f_{n+1} - f_n = \sum_{k=0}^{n+1} \binom{n+1}{k} \frac{1}{(k+1)^2} - \sum_{k=0}^n \binom{n}{k} \frac{1}{(k+1)^2} = \sum_{k=1}^{n+1} \binom{n+1}{k} \frac{1}{(k+1)^2} - \sum_{k=1}^n \binom{n}{k} \frac{1}{(k+1)^2} = \frac{1}{(n+2)^2} + \sum_{k=1}^n \binom{n+1}{k} \frac{1}{(k+1)^2} - \sum_{k=1}^n \binom{n}{k} \frac{1}{(k+1)^2} = \sum_{k=0}^n \binom{n}{k} \frac{1}{(k+2)^2}.$$
(B1)

So f_n could be thought of as row s = 1 of an array $f_{n,s}$ of sequences [1, 2],

$$f_{n,s} \equiv \sum_{k=0}^{n} \binom{n}{k} \frac{1}{(k+s)^2} = \frac{1}{s^2} \, {}_{3}F_2 \left(\begin{array}{c} s, s, -n \\ 1+s, 1+s \end{array} \mid -1 \right); \quad n \ge 0; \quad s \ne 0; \tag{B2}$$

$$f_n \equiv f_{n,1};\tag{B3}$$

with consecutive rows s related to first differences of previous rows s - 1:

$$f_{n+1,s} - f_{n,s} = \sum_{k=0}^{n+1} \binom{n+1}{k} \frac{1}{(k+s)^2} - \sum_{k=0}^n \binom{n}{k} \frac{1}{(k+s)^2} = \sum_{k=1}^{n+1} \binom{n+1}{k} \frac{1}{(k+s)^2} - \sum_{k=1}^n \binom{n}{k} \frac{1}{(k+s)^2}$$

$$= \frac{1}{(n+s+1)^2} + \sum_{k=1}^n \binom{n+1}{k} \frac{1}{(k+s)^2} - \sum_{k=1}^n \binom{n}{k} \frac{1}{(k+s)^2}$$

$$= \frac{1}{(n+s+1)^2} + \sum_{k=1}^n \left[\binom{n}{k} + \binom{n}{k-1}\right] \frac{1}{(k+s)^2} - \sum_{k=1}^n \binom{n}{k} \frac{1}{(k+s)^2}$$

$$= \frac{1}{(n+s+1)^2} + \sum_{k=1}^n \binom{n}{k-1} \frac{1}{(k+s)^2} = \frac{1}{(n+s+1)^2} + \sum_{k=0}^{n-1} \binom{n}{k} \frac{1}{(k+s+1)^2} = \sum_{k=0}^n \binom{n}{k} \frac{1}{(k+s+1)^2}$$

$$= \frac{1}{(1+s)^2} {}_3F_2 \left(\frac{1+s, 1+s, -n}{2+s, 2+s} \right) - 1 = f_{n,s+1}.$$
(B4)

- [1] M. Hasler (2008), SeqFan Mailing list.
- [2] R. Roy, Am. Math. Monthly **94**, 36 (1987).
- [3] P. Kirschenhofer, El. J. Combinat. **3**, #R7 (1996).
- [4] I. Gradstein and I. Ryshik, Summen-, Produkt- und Integraltafeln (Harri Deutsch, Thun, 1981), 1st ed., ISBN 3-87144-350-6.
- [5] J. Dziok and H. M. Srivastava, Appl. Math. Comput. **103**, 1 (1999).
- [6] J. M. Borwein, D. J. Broadhurst, and J. Kamnitzer, Exp. Math. 10, 25 (2001).