[go: up one dir, main page]

login
A096650
Indices of prime Pell numbers.
14
2, 3, 5, 11, 13, 29, 41, 53, 59, 89, 97, 101, 167, 181, 191, 523, 929, 1217, 1301, 1361, 2087, 2273, 2393, 8093, 13339, 14033, 23747, 28183, 34429, 36749, 90197
OFFSET
1,1
COMMENTS
For a Pell number to be prime, the index must be prime. The indices greater than 523 yield probable primes. No others less than 100000. - T. D. Noe, Sep 13 2004
n divides m if and only if A000129(n) divides A000129(m). This is the reason of the fact that this sequence is a subsequence of A000040. For complement of this sequence see A270387. - Altug Alkan, Apr 29 2016
LINKS
J. L. Schiffman, Exploring the Fibonacci sequence of order two with CAS technology, Paper C027, Electronic Proceedings of the Twenty-fourth Annual International Conference on Technology in Collegiate Mathematics, Orlando, Florida, March 22-25, 2012. See p. 262. - N. J. A. Sloane, Mar 27 2014
Eric Weisstein's World of Mathematics, Pell Number
Eric Weisstein's World of Mathematics, Integer Sequence Primes
EXAMPLE
P(11)=5741, which is prime.
MAPLE
Pell:= gfun:-rectoproc( {a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) + a(n-2)}, a(n), remember):
select(t -> isprime(t) and isprime(Pell(t)), [2, seq(2*i+1, i=1..2000)]); # Robert Israel, Aug 28 2015
MATHEMATICA
lst={}; a=0; b=1; Do[c=a+2b; a=b; b=c; If[PrimeQ[c], AppendTo[lst, n]], {n, 2, 10000}]; lst (* T. D. Noe, Aug 17 2004 *)
Flatten@ Position[#, p_ /; PrimeQ@ p] - 1 &@ CoefficientList[Series[x/(1 - 2 x - x^2), {x, 0, 5000}], x] (* Michael De Vlieger, Apr 29 2016, after Stefan Steinerberger at A000129 *)
CROSSREFS
Cf. A000129 (Pell numbers), A086383 (prime Pell numbers), A270387.
Sequence in context: A032024 A131741 A277098 * A111107 A186641 A215354
KEYWORD
nonn,hard,more
AUTHOR
Julien Peter Benney (jpbenney(AT)ftml.net), Aug 15 2004
EXTENSIONS
More terms from T. D. Noe, Aug 17 2004
Further terms from T. D. Noe, Sep 13 2004
STATUS
approved