[go: up one dir, main page]

login
Values y associated with A096545(n), sorted on z, then on y and finally on x.
5

%I #15 Jul 17 2020 03:49:16

%S 4,6,14,10,19,17,15,32,30,36,17,23,34,42,19,51,54,38,61,39,43,59,60,

%T 23,33,48,53,55,48,54,69,43,54,31,40,38,82,53,70,75,74,86,95,96,92,31,

%U 84,51,94,47,34,55,51,65,85,76,57,123,73,121,81,108,64,71,73,135,75,107,87

%N Values y associated with A096545(n), sorted on z, then on y and finally on x.

%C For 0<x<y<z, the primitive quadruples (x,y,z,w) satisfy x^3 + y^3 + z^3 = w^3.

%H David A. Corneth, <a href="/A095867/b095867.txt">Table of n, a(n) for n = 1..13798</a> (terms corresponding to z <= 8000)

%H Fred Richman, <a href="http://math.fau.edu/Richman/cubes.htm">Sums of Three Cubes</a>

%e a(1)=4 corresponding to the quadruple (3,4,5,6).

%t s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers];

%t xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&;

%t SortBy[xyzw, {#[[3]]&, #[[2]]&, #[[1]]&}][[All, 2]] (* _Jean-François Alcover_, Mar 06 2020 *)

%Y Primitive quadruples (x, y, z, w) = (A095868, A095867, A096545, A096546).

%K nonn

%O 1,1

%A _Ray Chandler_, Jun 28 2004