[go: up one dir, main page]

login
A095812
Greatest number, not divisible by 4, having exactly n partitions into three positive squares.
2
793, 1885, 3763, 6307, 13843, 16003, 21547, 34483, 48427, 54763, 85507, 90787, 111763, 103387, 166147, 137083, 222643, 211843, 289963, 253507, 296587, 319867, 462883, 375523, 393187, 546067, 502483, 532123, 615883, 590947, 662803, 991027, 703123, 958483
OFFSET
1,1
COMMENTS
These are conjectured values. The Mathematica program checks numbers up to 10^6.
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..200 (checked up to 10^8)
MATHEMATICA
lim=1000; nLst=Table[0, {lim^2}]; Do[n=a^2+b^2+c^2; If[n>0 && n<lim^2, nLst[[n]]++ ], {a, lim}, {b, a, Sqrt[lim^2-a^2]}, {c, b, Sqrt[lim^2-a^2-b^2]}]; Table[Last[Select[Flatten[Position[nLst, k]], Mod[ #, 4]>0&]], {k, 30}]
CROSSREFS
Cf. A025414 (least sum of 3 nonzero squares in exactly n ways).
Sequence in context: A281935 A037146 A045246 * A212239 A130555 A133537
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 07 2004
STATUS
approved