[go: up one dir, main page]

login
A095649
Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 8.
8
139, 181, 241, 283, 421, 467, 811, 829, 953, 1021, 1051, 1153, 1259, 1307, 1699, 1723, 1831, 1879, 2029, 2089, 2143, 2221, 2251, 2297, 2357, 2423, 2621, 2731, 3001, 3191, 3347, 3361, 3583, 3769, 3823, 3853, 4139, 4219, 4231, 4243, 4261, 4273, 4339, 4373
OFFSET
1,1
COMMENTS
Primes that are second prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.
LINKS
MATHEMATICA
m = 2; Prime[ 1 + Select[ Range[600], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)
Transpose[Select[Partition[Prime[Range[600]], 3, 1], #[[1]]+#[[3]]==2#[[2]]+ 8&]][[2]] (* Harvey P. Dale, Feb 26 2015 *)
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jul 02 2004
EXTENSIONS
Edited by Robert G. Wilson v, Jul 14 2004
Description corrected by N. J. A. Sloane, Jul 19 2004
STATUS
approved