[go: up one dir, main page]

login
A095401
number of steps required to reach 1 if the following modified juggler map is iterated: a[n]=(1-Mod[n, 2])*Floor[n^(3/4)]+Mod[n, 2]*Floor[n^(4/3)]; original exponents {1/2, 3/2} are replaced with {3/4, 4/3}.
0
0, 1, 3, 2, 4, 4, 8, 3, 5, 5, 7, 5, 7, 9, 11, 4, 8, 4, 6, 6, 12, 6, 18, 6, 14, 8, 12, 6, 14, 6, 18, 8, 18, 10, 12, 10, 16, 12, 14, 12, 20, 5, 7, 9, 11, 9, 13, 5, 9, 5, 9, 7, 13, 7, 11, 7, 11, 13, 19, 13, 15, 7, 9, 7, 17, 19, 21, 19, 23, 7, 11, 7, 13, 15, 17, 15, 19, 9, 11, 9, 11, 13, 15, 13, 19
OFFSET
1,3
EXAMPLE
n=101: the trajectory is {101, 470, 100, 31, 97, 445, 3397, 51065, 1894513, 234421146, 1894512, 51064, 3396, 444, 96, 30, 12, 6, 3, 4, 2, 1}, number of required steps is a[101]=22-1=21.
MATHEMATICA
e[x_]:=e[x]=(1-Mod[x, 2])*Floor[N[x^(3/4), 50]] +Mod[x, 2]*Floor[N[x^(4/3), 50]]; e[1]=1; fe[x_]:=Delete[FixedPointList[e, x], -1]; Table[ -1+Length[fe[w]], {w, 1, 150}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 18 2004
STATUS
approved