OFFSET
0,1
LINKS
G. C. Greubel, Rows n = 0..100 of triangle, flattened
FORMULA
From G. C. Greubel, Oct 30 2019: (Start)
T(n,k) = binomial(n,k)*Fibonacci(n-k+3).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+3).
Sum_{k=0..n} (-1)^k * T(n,k) = (-1)^n * Fibonacci(n-3). (End)
EXAMPLE
First few rows:
2;
3, 2;
5, 6, 2;
8, 15, 9, 2;
13, 32, 30, 12, 2;
21, 65, 80, 50, 15, 2;
MAPLE
with(combinat): seq(seq(fibonacci(n-k+3)*binomial(n, k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
MATHEMATICA
Table[Fibonacci[n-k+3]*Binomial[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
PROG
(PARI) T(n, k) = binomial(n, k)*fibonacci(n-k+3);
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Oct 30 2019
(Magma) [Binomial(n, k)*Fibonacci(n-k+3): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
(Sage) [[binomial(n, k)*fibonacci(n-k+3) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, k)*Fibonacci(n-k+3) ))); # G. C. Greubel, Oct 30 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, May 03 2004
STATUS
approved