[go: up one dir, main page]

login
A094201
a(n) = 4*n^5 + 10*n^4 + 13*n^3 + 11*n^2 + 5*n + 1.
2
1, 44, 447, 2248, 7685, 20676, 47299, 96272, 179433, 312220, 514151, 809304, 1226797, 1801268, 2573355, 3590176, 4905809, 6581772, 8687503, 11300840, 14508501, 18406564, 23100947, 28707888, 35354425, 43178876, 52331319
OFFSET
0,2
COMMENTS
Let x(n) = (1/2)*(-(2*n+1) + sqrt((2*n+1)^2 + 4)) and f(k) = (-1)*(Sum_{i=1..k} Sum_{j=1..i} (-1)^floor(j*x(n))), then a(n) = Max{f(k): 0 < k < A094200(n)}.
FORMULA
G.f.: (37*x^4 + 206*x^3 + 198*x^2 + 38*x + 1)/(x - 1)^6. - Jinyuan Wang, Apr 06 2020
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 44, 447, 2248, 7685, 20676}, 30] (* Harvey P. Dale, Oct 23 2021 *)
PROG
(PARI) a(n)=4*n^5+10*n^4+13*n^3+11*n^2+5*n+1
CROSSREFS
Sequence in context: A250336 A250337 A002613 * A210426 A231242 A221730
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, May 25 2004
EXTENSIONS
Corrected by T. D. Noe, Nov 09 2006
STATUS
approved