[go: up one dir, main page]

login
A093962
Continued fraction expansion of binomial(Pi,e) (A093961).
2
1, 1, 9, 2, 1, 2, 2, 1, 3, 11, 5, 3, 9, 3, 2, 2, 2, 1, 2, 4, 2, 1, 4, 3, 1, 1, 6, 1, 2, 5, 25, 1, 1, 2, 18, 1, 9, 2, 2, 4, 10, 1, 2, 2, 1, 5, 1, 20, 50, 2, 1, 1, 3, 2, 1, 1, 87, 1, 5, 1, 5, 47, 1, 1, 1, 1, 1, 2, 3, 1, 10, 3, 2, 1, 1, 1, 1, 9, 6, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 9, 9, 2, 13, 1, 7, 1, 4, 1, 2, 12
OFFSET
0,3
COMMENTS
The increasing partial quotients are 1, 9, 11, 25, 50, 87, 514, 610, 647, 676, 2710, 10647, ...
LINKS
EXAMPLE
1.903568065729906338900833721... = 1 + 1/(1 + 1/(9 + 1/(2 + 1/(1 + ...)))). - Harry J. Smith, Jun 17 2009
MATHEMATICA
ContinuedFraction[ Binomial[Pi, E], 100]
PROG
(PARI) { allocatemem(932245000); default(realprecision, 5400); e=exp(1); x=contfrac(gamma(Pi+1)/(gamma(e+1)*gamma(Pi-e+1))); for (n=1, 5000, write("b093962.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Jun 17 2009
(Sage) continued_fraction_list( gamma(pi+1)/(gamma(e+1)*gamma(pi -e +1)), nterms=110) # G. C. Greubel, Dec 29 2021
CROSSREFS
Cf. A093961 (decimal expansion).
Sequence in context: A296460 A319533 A010160 * A350298 A230191 A198984
KEYWORD
cofr,nonn
AUTHOR
Robert G. Wilson v, Apr 20 2004
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 07 2024
STATUS
approved